Cyclic alkyl amino carbenes explained

In chemistry, cyclic(alkyl)(amino)carbenes (CAACs) are a family of stable singlet carbene ligands developed by the research group of Guy Bertrand in 2005 at UC Riverside.[1] In marked contrast with the popular N-heterocyclic carbenes (NHCs) which possess two "amino" substituents adjacent to the carbene center, CAACs possess one "amino" substituent and an sp3 carbon atom "alkyl". This specific configuration makes the CAACs very good σ-donors (higher HOMO) and π-acceptors (lower LUMO) when compared to NHCs. Moreover the reduced heteroatom stabilization of the carbene center in CAACs versus NHCs also gives rise to a smaller ΔEST (48.3 vs 72.7 kcal mol-1).

Synthesis

The original preparation of CAACs precursors (Route 1) begins with condensation of 2,6-diisopropylaniline and 2-methylpropanal. Deprotonation of this aldimine with lithium diisopropylamide gives an aza-allyl anion, which ring opens 1,2-epoxy-2-methylpro-pane. The resulting lithium alkoxide is then treated with triflic anhydride to generate the aldiminium salt. Another methods (Route 2) involves alkylation of the aldimine with 3-bromo-2-methylpropene to generate an alkenyl aldimine, which cyclises to the corresponding iminium salts in the presence of HCl upon heating.[2] ,[3] ,[4] This straightforward approach allows for kilogram-scale syntheses of CAAC precursors. Finally, deprotonation of the iminimum salts with potassium bis(trimethylsilyl)amide affords the free carbene as a white solid. CAAC free carbenes are air and moisture sensitive but can be stored for weeks under an inert atmosphere.

Family of CAAC ligands

Since 2005, the family of cyclic (alkyl)(amino)carbenes expended to encompass the functionalized FunCAACs,[5] the BiCAACs with a bicyclic backbone,[6] the CAAC-6s with a 6-membered backbone,[7] and the chiral ChiCAACs used in asymmetric catalysis.[8]

Reactions

Cyclic (alkyl)(amino)carbenes have found to "stabilize" (for adducts of) highly reactive species.[9] ,[10] Better σ-donors and π-acceptors than the well-known N-heterocyclic carbenes (NHCs), these stable singlet carbene are well known for stabilising highly reactive species, such as highly reactive low valent complexes,[11] and main group radicals.[12] [13]

As ligand for transition metal catalysts, CAAC-Ru complexes catalyze ethenolysis.[14] Note that this was the first time ruthenium metathesis catalysts exhibited high performance in cross‐metathesis reactions employing ethylene gas, with activities sufficient for the industrial‐scale production of linear α‐olefins (LAOs) and other terminal‐olefin products.

CAACs are components of OLEDs.[15] [16] [17]

It was also demonstrated that their ambiphilic nature allows them to participate in the activation of enthalpically strong E-H bonds (E: N, P, Si, …),[18] a distinctive feature traditionally reserved to transition metals. It was also shown that bulky CAACs promote the reverse transformation,[19] a formal reductive elimination of E-H bonds at carbon, further delineating the parallel with transition metals.

References

  1. Lavallo. Vincent. Canac. Yves. Präsang. Carsten. Donnadieu. Bruno. Bertrand. Guy. 2005-09-05. Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. Angewandte Chemie International Edition. en. 44. 35. 5705–5709. 10.1002/anie.200501841. 1521-3773. 2427276. 16059961.
  2. Müller. Carsten. Andrada. Diego M.. Bischoff. Inga-Alexandra. Zimmer. Michael. Huch. Volker. Steinbrück. Nils. Schäfer. André. 2019-03-11. Synthesis, Structure, and Bonding Analysis of Tin(II) Dihalide and Cyclopentadienyltin(II) Halide (Alkyl)(amino)carbene Complexes. Organometallics. en. 38. 5. 1052–1061. 10.1021/acs.organomet.8b00861. 104422050 . 0276-7333.
  3. Jazzar. Rodolphe. Dewhurst. Rian D.. Bourg. Jean-Baptiste. Donnadieu. Bruno. Canac. Yves. Bertrand. Guy. 2007-04-13. Intramolecular 'Hydroiminiumation' of Alkenes: Application to the Synthesis of Conjugate Acids of Cyclic Alkyl Amino Carbenes (CAACs). Angewandte Chemie International Edition. en. 46. 16. 2899–2902. 10.1002/anie.200605083. 2440680. 17352445.
  4. Jazzar. Rodolphe. Bourg. Jean-Baptiste. Dewhurst. Rian D.. Donnadieu. Bruno. Bertrand. Guy. April 2007 . Intramolecular 'Hydroiminiumation and -amidiniumation' of Alkenes: A Convenient, Flexible, and Scalable Route to Cyclic Iminium and Imidazolinium Salts. The Journal of Organic Chemistry. en. 72. 9. 3492–3499. 10.1021/jo0703909. 0022-3263. 2440693. 17408289.
  5. Chu. Jiaxiang. Munz. Dominik. Jazzar. Rodolphe. Melaimi. Mohand. Bertrand. Guy. 2016-06-29. Synthesis of Hemilabile Cyclic (Alkyl)(amino)carbenes (CAACs) and Applications in Organometallic Chemistry. Journal of the American Chemical Society. en. 138. 25. 7884–7887. 10.1021/jacs.6b05221. 27304485. 0002-7863.
  6. Tomás-Mendivil. Eder. Hansmann. Max M.. Weinstein. Cory M.. Jazzar. Rodolphe. Melaimi. Mohand. Bertrand. Guy. 2017-06-14. Bicyclic (Alkyl)(amino)carbenes (BICAACs): Stable Carbenes More Ambiphilic than CAACs. Journal of the American Chemical Society. en. 139. 23. 7753–7756. 10.1021/jacs.7b04640. 28541687. 0002-7863.
  7. Weinstein. Cory M.. Junor. Glen P.. Tolentino. Daniel R.. Jazzar. Rodolphe. Melaimi. Mohand. Bertrand. Guy. 2018-07-25. Highly Ambiphilic Room Temperature Stable Six-Membered Cyclic (Alkyl)(amino)carbenes. Journal of the American Chemical Society. en. 140. 29. 9255–9260. 10.1021/jacs.8b05518. 29954178. 207192160 . 0002-7863.
  8. Pichon. Delphine. Soleilhavoup. Michele. Morvan. Jennifer. Junor. Glen P.. Vives. Thomas. Crévisy. Christophe. Lavallo. Vincent. Campagne. Jean-Marc. Mauduit. Marc. Jazzar. Rodolphe. Bertrand. Guy. 2019. The debut of chiral cyclic (alkyl)(amino)carbenes (CAACs) in enantioselective catalysis. Chemical Science. en. 10. 33. 7807–7811. 10.1039/C9SC02810B. 2041-6520. 6761915. 31588330.
  9. Soleilhavoup. Michèle. Bertrand. Guy. 2015-02-17. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Accounts of Chemical Research. 48. 2. 256–266. 10.1021/ar5003494. 25515548. 0001-4842.
  10. Melaimi. Mohand. Jazzar. Rodolphe. Soleilhavoup. Michèle. Bertrand. Guy. 2017. Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. Angewandte Chemie International Edition. en. 56. 34. 10046–10068. 10.1002/anie.201702148. 28376253. 1521-3773. free.
  11. Roy. Sudipta. Mondal. Kartik Chandra. Roesky. Herbert W.. 2016-03-15. Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. Accounts of Chemical Research. 49. 3. 357–369. 10.1021/acs.accounts.5b00381. 26925983. 0001-4842.
  12. Kundu. Subrata. Sinhababu. Soumen. Chandrasekhar. Vadapalli. Roesky. Herbert W.. 2019-05-08. Stable cyclic (alkyl)(amino)carbene (cAAC) radicals with main group substituents. Chemical Science. en. 10. 18. 4727–4741. 10.1039/C9SC01351B. 31160949. 6510188. 2041-6539. free.
  13. Ullrich. Tobias. Pinter. Piermaria. Messelberger. Julian. Haines. Philipp. Kaur. Ramandeep. Hansmann. Max M.. Munz. Dominik. Guldi. Dirk M.. 2020. Singlet Fission in Carbene-Derived Diradicaloids. Angewandte Chemie International Edition. en. 59. 20. 7906–7914. 10.1002/anie.202001286. 32129920. 7317569. 1521-3773. free.
  14. Marx. Vanessa M.. Sullivan. Alexandra H.. Melaimi. Mohand. Virgil. Scott C.. Keitz. Benjamin K.. Weinberger. David S.. Bertrand. Guy. Grubbs. Robert H.. 2015. Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis. Angewandte Chemie International Edition. en. 54. 6. 1919–1923. 10.1002/anie.201410797. 1521-3773. 4713124. 25522160.
  15. Di. Dawei. Romanov. Alexander S.. Yang. Le. Richter. Johannes M.. Rivett. Jasmine P. H.. Jones. Saul. Thomas. Tudor H.. Jalebi. Mojtaba Abdi. Friend. Richard H.. Linnolahti. Mikko. Bochmann. Manfred. 2017-04-14. High-performance light-emitting diodes based on carbene-metal-amides. Science. en. 356. 6334. 159–163. 10.1126/science.aah4345. 0036-8075. 28360136. 206651900. 1606.08868. 2017Sci...356..159D .
  16. Hamze. Rasha. Peltier. Jesse L.. Sylvinson. Daniel. Jung. Moonchul. Cardenas. Jose. Haiges. Ralf. Soleilhavoup. Michele. Jazzar. Rodolphe. Djurovich. Peter I.. Bertrand. Guy. Thompson. Mark E.. 2019-02-08. Eliminating nonradiative decay in Cu(I) emitters: >99% quantum efficiency and microsecond lifetime. Science. en. 363. 6427. 601–606. 10.1126/science.aav2865. 0036-8075. 30733411. 59621722. free. 2019Sci...363..601H .
  17. Jazzar. Rodolphe. Soleilhavoup. Michele. Bertrand. Guy. 2020-05-13. Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chemical Reviews. 120. 9. 4141–4168. 10.1021/acs.chemrev.0c00043. 32239922. 1773893. 214771584 . 0009-2665.
  18. Frey. G. D.. Lavallo. V.. Donnadieu. B.. Schoeller. W. W.. Bertrand. G.. 2007-04-20. Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center. Science. en. 316. 5823. 439–441. 10.1126/science.1141474. 17446400. 2007Sci...316..439F . 45106592. 0036-8075.
  19. Tolentino. Daniel R.. Neale. Samuel E.. Isaac. Connie J.. Macgregor. Stuart A.. Whittlesey. Michael K.. Jazzar. Rodolphe. Bertrand. Guy. 2019-06-26. Reductive Elimination at Carbon under Steric Control. Journal of the American Chemical Society. 141. 25. 9823–9826. 10.1021/jacs.9b04957. 31180660. 184484268 . 0002-7863.