Cover (algebra) explained

In abstract algebra, a cover is one instance of some mathematical structure mapping onto another instance, such as a group (trivially) covering a subgroup. This should not be confused with the concept of a cover in topology.

When some object X is said to cover another object Y, the cover is given by some surjective and structure-preserving map . The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In order to be interesting, the cover is usually endowed with additional properties, which are highly dependent on the context.

Examples

A classic result in semigroup theory due to D. B. McAlister states that every inverse semigroup has an E-unitary cover; besides being surjective, the homomorphism in this case is also idempotent separating, meaning that in its kernel an idempotent and non-idempotent never belong to the same equivalence class.; something slightly stronger has actually be shown for inverse semigroups: every inverse semigroup admits an F-inverse cover.[1] McAlister's covering theorem generalizes to orthodox semigroups: every orthodox semigroup has a unitary cover.[2]

Examples from other areas of algebra include the Frattini cover of a profinite group[3] and the universal cover of a Lie group.

Modules

If F is some family of modules over some ring R, then an F-cover of a module M is a homomorphism XM with the following properties:

In general an F-cover of M need not exist, but if it does exist then it is unique up to (non-unique) isomorphism.

Examples include:

See also

References

Notes and References

  1. Lawson p. 230
  2. Grilett p. 360
  3. Book: Fried . Michael D. . Jarden . Moshe . Field arithmetic . 3rd revised . Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge . 11 . . 2008 . 978-3-540-77269-9 . 1145.12001 . 508 .