In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed (with probability one) by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of . The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.
Every finite or countably infinite graph is an induced subgraph of the Rado graph, and can be found as an induced subgraph by a greedy algorithm that builds up the subgraph one vertex at a time. The Rado graph is uniquely defined, among countable graphs, by an extension property that guarantees the correctness of this algorithm: no matter which vertices have already been chosen to form part of the induced subgraph, and no matter what pattern of adjacencies is needed to extend the subgraph by one more vertex, there will always exist another vertex with that pattern of adjacencies that the greedy algorithm can choose.
The Rado graph is highly symmetric: any isomorphism of its finite induced subgraphs can be extended to a symmetry of the whole graph.The first-order logic sentences that are true of the Rado graph are also true of almost all random finite graphs, and the sentences that are false for the Rado graph are also false for almost all finite graphs. In model theory, the Rado graph is an example of the unique countable model of an ω-categorical theory.
The Rado graph was first constructed by in two ways, with vertices either the hereditarily finite sets or the natural numbers. (Strictly speaking Ackermann described a directed graph, and the Rado graph is the corresponding undirected graph given by forgetting the directions on the edges.) constructed the Rado graph as the random graph on a countable number of points. They proved that it has infinitely many automorphisms, and their argument also shows that it is unique though they did not mention this explicitly. rediscovered the Rado graph as a universal graph, and gave an explicit construction of it with the natural numbers as the vertex set. Rado's construction is essentially equivalent to one of Ackermann's constructions.
and constructed the Rado graph using the BIT predicate as follows. They identified the vertices of the graph with the natural numbers 0, 1, 2, ...An edge connects vertices
x
y
x<y
x
y
The Rado graph arises almost surely in the Erdős–Rényi model of a random graph on countably many vertices. Specifically, one may form an infinite graph by choosing, independently and with probability 1/2 for each pair of vertices, whether to connect the two vertices by an edge. With probability 1 the resulting graph is isomorphic to the Rado graph. This construction also works if any fixed probability
p
This result, shown by, justifies the definite article in the common alternative name "the random graph" for the Rado graph. Repeatedly drawing a finite graph from the Erdős–Rényi model will in general lead to different graphs; however, when applied to a countably infinite graph, the model almost always produces the same infinite graph.
For any graph generated randomly in this way, the complement graph can be obtained at the same time by reversing all the choices: including an edge when the first graph did not include the same edge, and vice versa. This construction of the complement graph is an instance of the same process of choosing randomly and independently whether to include each edge, so it also (with probability 1) generates the Rado graph. Therefore, the Rado graph is a self-complementary graph.[3]
In one of Ackermann's original 1937 constructions, the vertices of the Rado graph are indexed by the hereditarily finite sets, and there is an edge between two vertices exactly when one of the corresponding finite sets is a member of the other. A similar construction can be based on Skolem's paradox, the fact that there exists a countable model for the first-order theory of sets. One can construct the Rado graph from such a model by creating a vertex for each set, with an edge connecting each pair of sets where one set in the pair is a member of the other.[4]
The Rado graph may also be formed by a construction resembling that for Paley graphs, taking as the vertices of a graph all the prime numbers that are congruent to 1 modulo 4, and connecting two vertices by an edge whenever one of the two numbers is a quadratic residue modulo the other. By quadratic reciprocity and the restriction of the vertices to primes congruent to 1 mod 4, this is a symmetric relation, so it defines an undirected graph, which turns out to be isomorphic to the Rado graph.
Another construction of the Rado graph shows that it is an infinite circulant graph, with the integers as its vertices and with an edge between each two integers whose distance (the absolute value of their difference) belongs to a particular set
S
S
S
The Rado graph can also be constructed as the block intersection graph of an infinite block design in which the number of points and the size of each block are countably infinite. It can also be constructed as the Fraïssé limit of the class of finite graphs.
The Rado graph satisfies the following extension property: for every two disjoint finite sets of vertices
U
V
x
U
V
x
U
x
V
x
x
V
x
V
With the random-graph definition of the Rado graph, each vertex outside the union of
U
V
1/2|U|+|V|
U
V
U
V
The extension property can be used to build up isomorphic copies of any finite or countably infinite graph
G
G
G
G
U
G
V
G
x
U
V
x
G
This method forms the basis for a proof by induction, with the 0-vertex subgraph as its base case, that every finite or countably infinite graph is an induced subgraph of the Rado graph.[7]
The Rado graph is, up to graph isomorphism, the only countable graph with the extension property. For example, let
G
H
Gi
Hi
G
H
gi
hi
G
H
Gi
Hi
Gi+1
Hi+1
gi
hi
G
H
G
H
Applying the back-and-forth construction to any two isomorphic finite subgraphs of the Rado graph extends their isomorphism to an automorphism of the entire Rado graph. The fact that every isomorphism of finite subgraphs extends to an automorphism of the whole graph is expressed by saying that the Rado graph is ultrahomogeneous. In particular, there is an automorphism taking any ordered pair of adjacent vertices to any other such ordered pair, so the Rado graph is a symmetric graph.[8]
The automorphism group of the Rado graph is a simple group, whose number of elements is the cardinality of the continuum. Every subgroup of this group whose index is less than the cardinality of the continuum contains the pointwise stabilizer of a finite set of vertices, and furthermore is contained within the setwise stabilizer of the same set.[10] The statement about pointwise stabilizers is called the small index property,[10] and proving it required showing that for every finite graph
X
Z
X
X
Z
The construction of the Rado graph as an infinite circulant graph shows that its symmetry group includes automorphisms that generate a transitive infinite cyclic group. The difference set of this construction (the set of distances in the integers between adjacent vertices) can be constrained to include the difference 1, without affecting the correctness of this construction, from which it follows that the Rado graph contains an infinite Hamiltonian path whose symmetries are a subgroup of the symmetries of the whole graph.
If a graph
G
U
V
U
V
G
V
For any partition of the vertices of the Rado graph into two sets
A
B
Ui
Vi
Ui
Vi
A related result concerns edge partitions instead of vertex partitions: for every partition of the edges of the Rado graph into finitely many sets, there is a subgraph isomorphic to the whole Rado graph that uses at most two of the colors. However, there may not necessarily exist an isomorphic subgraph that uses only one color of edges.[14] More generally, for every finite graph
A
dA
A
A
dA
used the Rado graph to prove a zero–one law for first-order statements in the logic of graphs. When a logical statement of this type is true or false for the Rado graph, it is also true or false (respectively) for almost all finite graphs.
The first-order language of graphs is the collection of well-formed sentences in mathematical logic formed from variables representing the vertices of graphs, universal and existential quantifiers, logical connectives, and predicates for equality and adjacency of vertices. For instance, the condition that a graph does not have any isolated vertices may be expressed by the sentencewhere the
\sim
S
G
S
G\modelsS
S
G
The extension property of the Rado graph may be expressed by a collection of first-order sentences
Ei,j
i
A
j
B
A
B
E1,1
proved that the sentences
Ei,j
S
S
λ
λ
λ
λ
As proved, the first-order sentences provable from the extension axioms and modeled by the Rado graph are exactly the sentences true for almost all random finite graphs. This means that if one chooses an
n
n
n
Because of this 0-1 law, it is possible to test whether any particular first-order sentence is modeled by the Rado graph in a finite amount of time, by choosing a large enough value of
n
n
Ek,0
(k+1)
k
The Rado graph is ultrahomogeneous, and thus is the Fraïssé limit of its class of finite substructures, i.e. the class of finite graphs.[22] Given that it is also in a finite relational language, ultrahomogeneity is equivalent to its theory having quantifier elimination and being ω-categorical.[23] As the Rado graph is thus the countable model of a countable ω-categorical theory, it is both prime and saturated.[24] [25]
The theory of the Rado graph is a prototypical example of a theory with the independence property, and of a simple theory that is not stable.
Although the Rado graph is universal for induced subgraphs, it is not universal for isometric embeddings of graphs,where an isometric embedding is a graph isomorphism which preserves distance. The Rado graph has diameter two, and so any graph with larger diameter does not embed isometrically into it. has described a family of universal graphs for isometric embedding, one for each possible finite graph diameter; the graph in his family with diameter two is the Rado graph.
The Henson graphs are countable graphs (one for each positive integer
i
i
i
The universality property of the Rado graph can be extended to edge-colored graphs; that is, graphs in which the edges have been assigned to different color classes, but without the usual edge coloring requirement that each color class form a matching. For any finite or countably infinite number of colors
\chi
\chi
G\chi
\chi
G1
While the Rado graph is countable universal for the class of all graphs, not all graph classes have a countable universal graph. For example, there is no countable graph omitting the 4-cycle as a subgraph that contains all other such countable graphs as (not necessarily induced) subgraphs.[26]
It follows from the classical model theory considerations of constructing a saturated model that under the continuum hypothesis CH, there is a universal graph with continuum many vertices. Of course, under CH, the continuum is equal to
\aleph1
\aleph1
\aleph1