In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.
The Coulomb wave equation for a single charged particle of mass
m
| |||||
\left(-\hbar | + |
Z\hbarc\alpha | |
r |
\right)\psi\vec{k
Z=Z1Z2
Z=-1
\alpha
\hbar2k2/(2m)
\xi=r+\vec{r} ⋅ \hat{k}, \zeta=r-\vec{r} ⋅ \hat{k} (\hat{k}=\vec{k}/k).
\psi\vec{k
M(a,b,z)\equiv{}1F1(a;b;z)
η=Zmc\alpha/(\hbark)
\Gamma(z)
\psi\vec{k
\vec{k}
\psi\vec{k
\psi\vec{k
The wave function
\psi\vec{k
w\ell(η,\rho)
\rho=kr
\psi\vec{k
\psik\ell(\vec{r})=\int\psi\vec{k
w\ell(η,\rho)
m(\hat{r}) | |
Y | |
\ell |
d2w\ell | +\left(1- | |
d\rho2 |
2η | - | |
\rho |
\ell(\ell+1) | |
\rho2 |
\right)w\ell=0.
z=-2i\rho
M-iη,\ell+1/2(-2i\rho)
W-iη,\ell+1/2(-2i\rho)
M
U
\ell\inZ
(\pm) | |
H | |
\ell |
(η,\rho)=\mp2i(-2)\elle\piη/2
\pmi\sigma\ell | |
e |
\rho\ell+1e\pmU(\ell+1\pmiη,2\ell+2,\mp2i\rho),
\sigma\ell=\arg\Gamma(\ell+1+iη)
F\ell(η,\rho)=
1 | |
2i |
(+) | |
\left(H | |
\ell |
(-) | |
(η,\rho)-H | |
\ell |
(η,\rho)\right),
G\ell(η,\rho)=
1 | |
2 |
(+) | |
\left(H | |
\ell |
(-) | |
(η,\rho)+H | |
\ell |
(η,\rho)\right).
F\ell(η,\rho)=
2\elle-\piη/2|\Gamma(\ell+1+iη)| | |
(2\ell+1)! |
\rho\ell+1ei\rhoM(\ell+1+iη,2\ell+2,-2i\rho).
(\pm) | |
H | |
\ell |
(η,\rho)
F\ell(η,\rho)
G\ell(η,\rho)
\rho
(\pm) | |
H | |
\ell |
(η,\rho)\sim
\pmi\theta\ell(\rho) | |
e |
,
F\ell(η,\rho)\sim\sin\theta\ell(\rho),
G\ell(η,\rho)\sim\cos\theta\ell(\rho),
\theta\ell(\rho)=\rho-ηlog(2\rho)-
1 | |
2 |
\ell\pi+\sigma\ell.
(\pm) | |
H | |
\ell |
(η,\rho)
F\ell(η,\rho)
G\ell(η,\rho)
\psi\vec{k
\psi\vec{k
The radial parts for a given angular momentum are orthonormal. When normalized on the wave number scale (k-scale), the continuum radial wave functions satisfy
infty | |
\int | |
0 |
\ast(r) | |
R | |
k\ell |
Rk'\ell(r)r2dr=\delta(k-k')
k/2\pi
infty | |
\int | |
0 |
\ast(r) | |
R | |
k\ell |
Rk'\ell(r)r2dr=2\pi\delta(k-k'),
infty | |
\int | |
0 |
\ast(r) | |
R | |
E\ell |
RE'\ell(r)r2dr=\delta(E-E').
infty | |
\int | |
0 |
\ast(r) | |
R | |
k\ell |
Rk'\ell(r)r2dr=
(2\pi)3 | |
k2 |
\delta(k-k')
\int
\ast | |
\psi | |
\vec{k |
The continuum (or scattering) Coulomb wave functions are also orthogonal to all Coulomb bound states
infty | |
\int | |
0 |
\ast(r) | |
R | |
k\ell |
Rn\ell(r)r2dr=0