Convergent cross mapping explained

Convergent cross mapping (CCM) is a statistical test for a cause-and-effect relationship between two variables that, like the Granger causality test, seeks to resolve the problem that correlation does not imply causation.[1] While Granger causality is best suited for purely stochastic systems where the influences of the causal variables are separable (independent of each other), CCM is based on the theory of dynamical systems and can be applied to systems where causal variables have synergistic effects. As such, CCM is specifically aimed to identify linkage between variables that can appear uncorrelated with each other.

Theory

In the event one has access to system variables as time series observations, Takens' embedding theorem can be applied. Takens' theorem generically proves that the state space of a dynamical system can be reconstructed from a single observed time series of the system,

X

. This reconstructed or shadow manifold

MX

is diffeomorphic to the true manifold,

M

, preserving instrinsic state space properties of

M

in

MX

.

Convergent Cross Mapping (CCM) leverages a corollary to the Generalized Takens Theorem[2] that it should be possible to cross predict or cross map between variables observed from the same system. Suppose that in some dynamical system involving variables

X

and

Y

,

X

causes

Y

. Since

X

and

Y

belong to the same dynamical system, their reconstructions via embeddings

MX

and

MY

, also map to the same system.

The causal variable

X

leaves a signature on the affected variable

Y

, and consequently, the reconstructed states based on

Y

can be used to cross predict values of

X

. CCM leverages this property to infer causality by predicting

X

using the

MY

library of points (or vice-versa for the other direction of causality), while assessing improvements in cross map predictability as larger and larger random samplings of

MY

are used. If the prediction skill of

X

increases and saturates as the entire

MY

is used, this provides evidence that

X

is causally influencing

Y

.

Cross mapping is generally asymmetric. If

X

forces

Y

unidirectionally, variable

Y

will contain information about

X

, but not vice versa. Consequently, the state of

X

can be predicted from

MY

, but

Y

will not be predictable from

MX

.

Algorithm

The basic steps of convergent cross mapping for a variable

X

of length

N

against variable

Y

are:
  1. If needed, create the state space manifold

MY

from

Y

  1. Define a sequence of library subset sizes

L

ranging from a small fraction of

N

to close to

N

.
  1. Define a number of ensembles

NE

to evaluate at each library size.
  1. At each library subset size

Li

:
    1. For

NE

ensembles:
      1. Randomly select

Li

state space vectors from

MY

      1. Estimate

\hat{X}

from the random subset of

MY

using the Simplex state space prediction
      1. Compute the correlation

\rho

between

\hat{X}

and

X

    1. Compute the mean correlation

\bar{\rho}

over the

NE

ensembles at

Li

  1. The spectrum of

\bar{\rho}

versus

L

must exhibit convergence.
  1. Assess significance. One technique is to compare

\bar{\rho}

to

\bar{\rhoS}

computed from

S

random realizations (surrogates) of

X

.

Applications

CCM is used to detect if two variables belong to the same dynamical system, for example, can past ocean surface temperatures be estimated from the population data over time of sardines or if there is a causal relationship between cosmic rays and global temperatures. As for the latter it was hypothesised that cosmic rays may impact cloud formation, therefore cloudiness, therefore global temperatures.

Extensions

Extensions to CCM include:

See also

Further reading

External links

Animations:

Notes and References

  1. Detecting Causality in Complex Ecosystems . 10.1126/science.1227079 . 2012 . Sugihara . George . May . Robert . Ye . Hao . Hsieh . Chih-hao . Deyle . Ethan . Fogarty . Michael . Munch . Stephan . Science . 338 . 6106 . 496–500 . 22997134 . 2012Sci...338..496S . 19749064 . free .
  2. 10.1371/journal.pone.0018295 . free . Generalized Theorems for Nonlinear State Space Reconstruction . 2011 . Deyle . Ethan R. . Sugihara . George . PLOS ONE . 6 . 3 . e18295 . 21483839 . 3069082 . 2011PLoSO...618295D .
  3. 10.1038/srep14750 . Distinguishing time-delayed causal interactions using convergent cross mapping . 2015 . Ye . Hao . Deyle . Ethan R. . Gilarranz . Luis J. . Sugihara . George . Scientific Reports . 5 . 14750 . 26435402 . 4592974 . 2015NatSR...514750Y .
  4. Convergent cross sorting for estimating dynamic coupling . 10.1038/s41598-021-98864-2 . 2021 . Breston . Leo . Leonardis . Eric J. . Quinn . Laleh K. . Tolston . Michael . Wiles . Janet . Chiba . Andrea A. . Scientific Reports . 11 . 1 . 20374 . 34645847 . 8514556 . 2021NatSR..1120374B . 238859361 .