Convergent beam electron diffraction explained

Convergent beam electron diffraction (CBED) is an electron diffraction technique where a convergent or divergent beam (conical electron beam) of electrons is used to study materials.

History

CBED was first introduced in 1939 by Kossel and Möllenstedt.[1] The development of the Field Emission Gun (FEG) in the 1970s,[2] the Scanning Transmission Electron Microscopy (STEM), energy filtering devices and so on, made possible smaller probe diameters and larger convergence angles, and all this made CBED more popular. In the seventies, CBED was being used for the determination of the point group and space group symmetries by Goodman and Lehmpfuh,[3] and Buxton,[4] and starting in 1985, CBED was used by Tanaka et al. for studying crystals structure.[5] [6] [7] [8] [9]

Applications

By using CBED, the following information can be obtained:

Parameters

2 d_ \sin\theta_ = n \lambda,where

dhkl

is the distance between the crystallographic planes

(h,k,l)

,

\theta\rm

is the Bragg angle,

n

is an integer, and

λ

is the wavelength of the probing electrons.

\alpha

- is controlled by the C2 aperture. The probing beam convergence semi-angle,

\alpha

, is of the order of milliradians, ranging from 0.1˚ to 1˚.[21] For small convergence semi-angle, the CBED disks do not overlap with each other, whereas for larger semi-convergence angles, the disks overlap.[22]

\alpha

: D = \frac \sin \alpha.

\Deltaf

: The distance between the crossover of the probing beam and the

z

position of the specimen is called the defocus distance

\Deltaf

. The sample can be moved along the

z

axis. At a defocus distance, both the direct space and reciprocal space information are visible in the CBED pattern.[23]

Related techniques

Advantages and disadvantages of CBED

Since the diameter of the probing convergent beam is smaller than in the case of a parallel beam, most of the information in the CBED pattern is obtained from very small regions, which other methods cannot reach. For example, in Selected Area Electron Diffraction (SAED), where a parallel beam illumination is used, the smallest area that can be selected is 0.5 μm at 100 kV, whereas in CBED, it is possible to go to areas smaller than 100 nm.[41] Also, the amount of information that is obtained from a CBED pattern is larger than that from a SAED pattern.Nonetheless, CBED also has its disadvantages. The focused probe may generate contamination, which can cause localized stresses. But this was more of a problem in the past, and now, with the high vacuum conditions, one should be able to probe a clean region of the specimen in minutes to hours. Another disadvantage is that the convergent beam may heat or damage the chosen region of the specimen.[42] Since 1939, CBED has been mainly used to study thicker materials.

CBED on 2D crystals

Recently, CBED was applied to study graphene[43] and other 2D monolayer crystals and van der Waals structures. For 2D crystals, the analysis of CBED patterns is simplified, because the intensity distribution in a CBED disk is directly related to the atomic arrangement in the crystal. The deformations at a nanometer resolution have been retrieved, the interlayer distance of a bilayer crystal has been reconstructed, and so on, by using CBED.[44]

Notes and References

  1. Kossel . W. . Möllenstedt . G. . Elektroneninterferenzen im konvergenten Bündel . Annalen der Physik . 1939 . 428 . 2 . 113–140 . 10.1002/andp.19394280204. 1939AnP...428..113K .
  2. Crewe . A. V. . Isaacson . M. . Johnson . D. . A Simple Scanning Electron Microscope . Review of Scientific Instruments . February 1969 . 40 . 2 . 241–246 . 10.1063/1.1683910. 1969RScI...40..241C .
  3. Goodman . P. . Lehmpfuhl . G. . Observation of the breakdown of Friedel's law in electron diffraction and symmetry determination from zero-layer interactions . Acta Crystallographica Section A . 1 May 1968 . 24 . 3 . 339–347 . 10.1107/S0567739468000677. 1968AcCrA..24..339G .
  4. Buxton . B. F. . Eades . J. A. . Steeds . John Wickham . Rackham . G. M. . Frank . Frederick Charles . The symmetry of electron diffraction zone axis patterns . Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences . 11 March 1976 . 281 . 1301 . 171–194 . 10.1098/rsta.1976.0024 . 1976RSPTA.281..171B . 122890943 .
  5. Book: Tanaka . Michiyoshi . Terauchi . Masami . Convergent-Beam Electron Diffraction I . 1985 . JEOL Ltd.
  6. Book: Tanaka . Michiyoshi . Terauchi . Masami . Convergent beam electron diffraction II . 1988 . JEOL Ltd.
  7. Book: Tanaka . Michiyoshi . Terauchi . Masami . Tsuda . Kenji . Convergent beam electron diffraction III . 1994 . JEOL Ltd.
  8. Tanaka . Michiyoshi . Convergent-beam electron diffraction . Acta Crystallographica Section A . 1994 . 50. 3 . 261–286 . 10.1107/S0108767393010426 . 1994AcCrA..50..261T .
  9. Book: Tanaka . Michiyoshi . Terauchi . Masami . Tsuda . Kenji . Saitoh . Koh . Convergent beam electron diffraction IV . 2002.
  10. Jones . P. M. . Rakham . G. M. . Steeds . John Wick . Higher order Laue zone effects in electron diffraction and their use in lattice parameter determination . Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences . 30 May 1977 . 354 . 1677 . 197–222 . 10.1098/rspa.1977.0064. 1977RSPSA.354..197J . 98158162 .
  11. Kelly . P. M. . Jostsons . A. . Blake . R. G. . Napier . J. G. . The determination of foil thickness by scanning transmission electron microscopy . Physica Status Solidi A . 16 October 1975 . 31 . 2 . 771–780 . 10.1002/pssa.2210310251. 1975PSSAR..31..771K .
  12. Clément . L. . Pantel . R. . Kwakman . L. F. Tz. . Rouvière . J. L. . Strain measurements by convergent-beam electron diffraction: The importance of stress relaxation in lamella preparations . Applied Physics Letters . 26 July 2004 . 85 . 4 . 651–653 . 10.1063/1.1774275. 2004ApPhL..85..651C .
  13. Morniroli . J. P. . CBED and LACBED characterization of crystal defects . Journal of Microscopy . September 2006 . 223 . 3 . 240–245 . 10.1111/j.1365-2818.2006.01630.x. 17059540 . 21117117 .
  14. Carpenter . R. W. . Spence . J. C. H. . Three-dimensional strain-field information in convergent-beam electron diffraction patterns . Acta Crystallographica Section A . 1 January 1982 . 38 . 1 . 55–61 . 10.1107/S0567739482000102. 1982AcCrA..38...55C .
  15. Wu . Lijun . Zhu . Yimei . Tafto . J. . Welch . D. O. . Suenaga . M. . Quantitative analysis of twist boundaries and stacking faults in Bi-based superconductors by parallel recording of dark-field images with a coherent electron source . Physical Review B . 19 September 2002 . 66 . 10 . 104517 . 10.1103/PhysRevB.66.104517. 2002PhRvB..66j4517W .
  16. Wu . Lijun . Zhu . Yimei . Tafto . J. . Picometer Accuracy in Measuring Lattice Displacements Across Planar Faults by Interferometry in Coherent Electron Diffraction . Physical Review Letters . 11 December 2000 . 85 . 24 . 5126–5129 . 10.1103/PhysRevLett.85.5126. 11102202 . 2000PhRvL..85.5126W .
  17. Tanaka . M. . Saito . R. . Sekii . H. . Point-group determination by convergent-beam electron diffraction . Acta Crystallographica Section A . 1 May 1983 . 39 . 3 . 357–368 . 10.1107/S010876738300080X. 1983AcCrA..39..357T .
  18. Goodman . P. . A practical method of three-dimensional space-group analysis using convergent-beam electron diffraction . Acta Crystallographica Section A . 1 November 1975 . 31 . 6 . 804–810 . 10.1107/S0567739475001738. 1975AcCrA..31..804G . 98081846 . free .
  19. Tanaka . M. . Sekii . H. . Nagasawa . T. . Space-group determination by dynamic extinction in convergent-beam electron diffraction . Acta Crystallographica Section A . 1 November 1983 . 39 . 6 . 825–837 . 10.1107/S0108767383001695. 1983AcCrA..39..825T .
  20. Schnitzer . N. . Sung . S.H. . Hovden . R.H. . Introduction to the Ronchigram and its Calculation with Ronchigram . Microscopy Today . 3 . 2019 . 3 . 12–15 . 10.1017/S1551929519000427 . 155224415 . free .
  21. Book: Tanaka . Michiyoshi . Terauchi . Masami . Convergent-Beam Electron Diffraction I . 1985.
  22. Morniroli . J. P. . CBED and LACBED characterization of crystal defects . Journal of Microscopy . 2006 . 223 . 3 . 240–245 . 10.1111/j.1365-2818.2006.01630.x . 17059540 . 21117117 . en . 1365-2818.
  23. Book: Cowley . J. M. . Advances in electronics and electron physics . 1987.
  24. Tanaka . Michiyoshi . Conventional Transmission-Electron-Microscopy Techniques in Convergent-Beam Electron Diffraction . Journal of Electron Microscopy . 1986 . 10.1093/oxfordjournals.jmicro.a050584.
  25. Tanaka . Michiyoshi . Saito . Ryuichi . Ueno . Katsuyoshi . Harada . Yoshiyasu . Large-Angle Convergent-Beam Electron Diffraction . Journal of Electron Microscopy . 1980 . 10.1093/oxfordjournals.jmicro.a050262.
  26. Book: Tanaka . Michiyoshi . Terauchi . Masami . Convergent-Beam Electron Diffraction I . 1985.
  27. O'Leary . C. M. . Allen . C. S. . Huang . C. . Kim . J. S. . Liberti . E. . Nellist . P. D.. Peter Nellist . Kirkland . A. I. . Phase reconstruction using fast binary 4D STEM data . Applied Physics Letters . 23 March 2020 . 116 . 12 . 124101 . 10.1063/1.5143213. 2020ApPhL.116l4101O . 216342216 .
  28. Tsuda . Kenji . Yasuhara . Akira . Tanaka . Michiyoshi . Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO 3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods . Applied Physics Letters . 19 August 2013 . 103 . 8 . 082908 . 10.1063/1.4819221. 2013ApPhL.103h2908T.
  29. van Oostrum . K. J. . Leenhouts . A. . Jore . A. . A new scanning microdiffraction technique . Applied Physics Letters . September 1973 . 23 . 5 . 283–284 . 10.1063/1.1654890. 1973ApPhL..23..283V .
  30. Book: Tanaka . Michiyoshi . Terauchi . Masami . Convergent-Beam Electron Diffraction I . 1985.
  31. Tanaka . Michiyoshi . Saito . Ryuichi . Ueno . Katsuyoshi . Harada . Yoshiyasu . 1 January 1980 . Large-Angle Convergent-Beam Electron Diffraction . Journal of Electron Microscopy . 29 . 4 . 408–412 . 10.1093/oxfordjournals.jmicro.a050262 . 0022-0744.
  32. Tanaka . Michiyoshi . Ueno . Katsuyoshi . Hirata . Yoshihiro . Signal Processing of Convergent-Beam Electron Diffraction Patterns Obtained by the Beam-Rocking Method . Japanese Journal of Applied Physics . April 1980 . 19 . 4 . L201–L204 . 10.1143/JJAP.19.L201. 1980JaJAP..19L.201T . 122484061 .
  33. Spence . J.C.H. . Poon . H.C. . Saldin . D.K. . Convergent-Beam Low Energy Electron Diffraction (CBLEED) and the Measurement of Surface Dipole Layers . Microscopy and Microanalysis . February 2004 . 10 . 1 . 128–133 . 10.1017/S1431927604040346. 15306076 . 2004MiMic..10..128S . 46584545 .
  34. Ruben . G. . Jesson . D.E. . Paganin . D.M. . Smith . A.E. . Kinematic simulation of convergent beam low-energy electron diffraction patterns . Optik . May 2009 . 120 . 9 . 401–408 . 10.1016/j.ijleo.2007.10.006. 2009Optik.120..401R .
  35. Constantinou . Procopios C. . Jesson . David E. . On the sensitivity of convergent beam low energy electron diffraction patterns to small atomic displacements . Applied Surface Science . September 2019 . 489 . 504–509 . 10.1016/j.apsusc.2019.05.274. 2019ApSS..489..504C . 182169602 . free .
  36. Jiang . Yi . Chen . Zhen . Han . Yimo . Deb . Pratiti . Gao . Hui . Xie . Saien . Purohit . Prafull . Tate . Mark W. . Park . Jiwoong . Gruner . Sol M. . Elser . Veit . Muller . David A. . Electron ptychography of 2D materials to deep sub-ångström resolution . Nature . July 2018 . 559 . 7714 . 343–349 . 10.1038/s41586-018-0298-5. 30022131 . 1801.04630 . 2018Natur.559..343J . 119359004 .
  37. Web site: Highest resolution microscope . Guinness World Records.
  38. Carpenter . R. W. . Spence . J. C. H. . Applications of modern microdiffraction to materials science . Journal of Microscopy . November 1984 . 136 . 2 . 165–178 . 10.1111/j.1365-2818.1984.tb00526.x. 136906069 .
  39. Book: Williams . David B. . Transmission electron microscopy: a textbook for materials science . 2009 . Springer . New York . 978-0-387-76501-3 . 2nd.
  40. Book: Steeds . John Wickham . Hren . J. J. . Goldstein . J. I. . Joy . D. C. . Introduction to Analytical Electron Microscopy . Plenum Press . 1979 . 387.
  41. Champness . P. E. . Convergent beam electron diffraction . Mineralogical Magazine . March 1987 . 51 . 359 . 33–48 . 10.1180/minmag.1987.051.359.04. 1987MinM...51...33C . 30145465 .
  42. Book: Williams . David B. . Transmission electron microscopy : a textbook for materials science . 2009 . Springer . New York . 978-0-387-76501-3 . 2nd.
  43. Meyer . Jannik . Geim . Andre K. . Katsnelson . M. I. . Novoselov . K. S. . Obergfell . D. . Roth . S. . Girit . C. . Zettl . A.. On the roughness of single- and bi-layer graphene membranes . Solid State Communications . 2007 . 143 . 1–2 . 101–109 . 10.1016/j.ssc.2007.02.047. cond-mat/0703033 . 2007SSCom.143..101M .
  44. Latychevskaia . Tatiana . Woods . Colin Robert . Wang . Yi Bo . Holwill . Matthew . Prestat . Eric . Haigh . Sarah J. . Novoselov . Kostya S. . Convergent beam electron holography for analysis of van der Waals heterostructures . Proceedings of the National Academy of Sciences . 17 July 2018 . 115 . 29 . 7473–7478 . 10.1073/pnas.1722523115. 29970422 . 6055151 . 1807.01927 . 2018PNAS..115.7473L . free .