Continuum structure function explained
In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1] [2] [3]
Further reading
- Kim . Chul. Baxter . Laurence A. . Laurence Baxter. 1987. Axiomatic characterizations of continuum structure functions. Operations Research Letters. 6. 6. 297 - 300. 10.1016/0167-6377(87)90047-2.
- Baxter . Laurence A. . Laurence Baxter . Lee . Seung Min . 10.1017/S026996480000111X . Further Properties of Reliability Importance for Continuum Structure Functions . Probability in the Engineering and Informational Sciences . 3 . 2 . 237 . 2009 . 122033755 .
Notes and References
- Baxter . Laurence A. . Laurence Baxter. 1984. Continuum structures I. Journal of Applied Probability. 21. 4. 802–815. 3213697. 10.2307/3213697.
- Baxter . Laurence A. . Laurence Baxter. 1986. Continuum structures. II. Mathematical Proceedings of the Cambridge Philosophical Society. 99. 2. 331–338. 10.1017/S0305004100064240. 1986MPCPS..99..331B .
- Kim . Chul. Baxter . Laurence A. . Laurence Baxter. 1987. Reliability importance for continuum structure functions. Journal of Applied Probability. 24. 3. 779–785. 3214108. 10.2307/3214108.