Continuous Hahn polynomials explained

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

pn(x;a,b,c,d)=

n(a+c)n(a+d)n
n!
i

{}3F2\left(\begin{array}{c}-n,n+a+b+c+d-1,a+ix\a+c,a+d\end{array};1\right)

give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials Qn(x;a,b,c), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

w(x)=\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix).

In particular, they satisfy the orthogonality relation[1] [2] [3]
\begin{align}&1
2\pi
infty
\int
-infty

\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix)pm(x;a,b,c,d)p

n(x;a,b,c,d)dx\\ &       =\Gamma(n+a+c)\Gamma(n+a+d)\Gamma(n+b+c)\Gamma(n+b+d)
n!(2n+a+b+c+d-1)\Gamma(n+a+b+c+d-1)

\deltan\end{align}

for

\Re(a)>0

,

\Re(b)>0

,

\Re(c)>0

,

\Re(d)>0

,

c=\overline{a}

,

d=\overline{b}

.

Recurrence and difference relations

The sequence of continuous Hahn polynomials satisfies the recurrence relation[4]

xpn(x)=pn+1(x)+i(An+Cn)pn(x)-An-1Cnpn-1(x),

\begin{align} where&p
n(x)=n!(n+a+b+c+d-1)!
(2n+a+b+c+d-1)!

pn(x;a,b,c,d),\\ &A

n=-(n+a+b+c+d-1)(n+a+c)(n+a+d)
(2n+a+b+c+d-1)(2n+a+b+c+d)
,\\ and&C
n=n(n+b+c-1)(n+b+d-1)
(2n+a+b+c+d-2)(2n+a+b+c+d-1)

. \end{align}

Rodrigues formula

The continuous Hahn polynomials are given by the Rodrigues-like formula[5]

\begin{align}&\Gamma(a+ix)\Gamma(b+ix)\Gamma(c-ix)\Gamma(d-ix)p
n(x;a,b,c,d)\\ &    =(-1)n
n!
dn\left(\Gamma\left(a+
dxn
n+ix\right)\Gamma\left(b+
2
n+ix\right)\Gamma\left(c+
2
n-ix\right)\Gamma\left(d+
2
n
2

-ix\right)\right).\end{align}

Generating functions

The continuous Hahn polynomials have the following generating function:[6]

infty
\begin{align}&\sum
n=0
\Gamma(n+a+b+c+d)\Gamma(a+c+1)\Gamma(a+d+1)
\Gamma(a+b+c+d)\Gamma(n+a+c+1)\Gamma(n+a+d+1)

(-it)n

1-a-b-c-d
p
n(x;a,b,c,d)\\ &    =(1-t)

{}3F2\left(\begin{array}{c}

12(a+b+c+d-1),
12(a+b+c+d),
a+ix\a+c,

a+d\end{array};-

4t
(1-t)2

\right).\end{align}

A second, distinct generating function is given by
infty
\sum
n=0
\Gamma(a+c+1)\Gamma(b+d+1)
\Gamma(n+a+c+1)\Gamma(n+b+d+1)

tnpn(x;a,b,c,d)=1F1\left(\begin{array}{c}a+ix\a+c\end{array};-it\right)1F1\left(\begin{array}{c}d-ix\b+d\end{array};it\right).

Relation to other polynomials

pn\left(x;\tfrac12,\tfrac12,\tfrac12,\tfrac12\right)=inn!Fn\left(2ix\right).

(\alpha,\beta)
P
n

=\limt\toinftyt-npn\left(\tfrac12xt;\tfrac12(\alpha+1-it),\tfrac12(\beta+1+it),\tfrac12(\alpha+1+it),\tfrac12(\beta+1-it)\right).

Notes and References

  1. Koekoek, Lesky, & Swarttouw (2010), p. 200.
  2. Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.
  3. Andrews, Askey, & Roy (1999), p. 333.
  4. Koekoek, Lesky, & Swarttouw (2010), p. 201.
  5. Koekoek, Lesky, & Swarttouw (2010), p. 202.
  6. Koekoek, Lesky, & Swarttouw (2010), p. 202.
  7. Koekoek, Lesky, & Swarttouw (2010), p. 203.