Terminal server explained

A terminal server connects devices with a serial port to a local area network (LAN). Products marketed as terminal servers can be very simple devices that do not offer any security functionality, such as data encryption and user authentication. The primary application scenario is to enable serial devices to access network server applications, or vice versa, where security of the data on the LAN is not generally an issue. There are also many terminal servers on the market that have highly advanced security functionality to ensure that only qualified personnel can access various servers and that any data that is transmitted across the LAN, or over the Internet, is encrypted. Usually, companies that need a terminal server with these advanced functions want to remotely control, monitor, diagnose and troubleshoot equipment over a telecommunications network.

A console server (also referred to as console access server, console management server, serial concentrator, or serial console server) is a device or service that provides access to the system console of a computing device via networking technologies.

History

Although primarily used as an Interface Message Processor starting in 1971, the Honeywell 316 could also be configured as a Terminal Interface Processor (TIP) and provide terminal server support for up to 63 ASCII serial terminals through a multi-line controller in place of one of the hosts.[1]

Historically, a terminal server was a device that attached to serial RS-232 devices, such as "green screen" text terminals or serial printers, and transported traffic via TCP/IP, Telnet, SSH or other vendor-specific network protocols (e.g., LAT) via an Ethernet connection.

Digital Equipment Corporation's DECserver 100 (1985), 200 (1986) and 300 (1991) are early examples of this technology. (An earlier version of this product, known as the DECSA Terminal Server was actually a test-bed or proof-of-concept for using the proprietary LAT protocol in commercial production networks.) With the introduction of inexpensive flash memory components, Digital's later DECserver 700 (1991) and 900 (1995) no longer shared with their earlier units the need to download their software from a "load host" (usually a Digital VAX or Alpha) using Digital's proprietary Maintenance Operations Protocol (MOP). In fact, these later terminal server products also included much larger flash memory and full support for the Telnet part of the TCP/IP protocol suite. Many other companies entered the terminal-server market with devices pre-loaded with software fully compatible with LAT and Telnet.

Modern usage

A "terminal server" is used many ways but from a basic sense if a user has a serial device and they need to move data over the LAN, this is the product they need.

Console Server

A console server (console access server, console management server, serial concentrator, or serial console server) is a device or service that provides access to the system console of a computing device via networking technologies.

Most commonly, a console server provides a number of serial ports, which are then connected to the serial ports of other equipment, such as servers, routers or switches. The consoles of the connected devices can then be accessed by connecting to the console server over a serial link such as a modem, or over a network with terminal emulator software such as telnet or ssh, maintaining survivable connectivity that allows remote users to log in the various consoles without being physically nearby.

Description

Dedicated console server appliances are available from a number of manufacturers in many configurations, with the number of serial ports ranging from one to 96. These Console Servers are primarily used for secure remote access to Unix Servers, Linux Servers, switches, routers, firewalls, and any other device on the network with a console port. The purpose is to allow network operations center (NOC) personnel to perform secure remote data center management and out-of-band management of IT assets from anywhere in the world. Products marketed as Console Servers usually have highly advanced security functionality to ensure that only qualified personnel can access various servers and that any data that is transmitted across the LAN, or over the Internet, is encrypted. Marketing a product as a console server is very application specific because it really refers to what the user wants to do—remotely control, monitor, diagnose and troubleshoot equipment over a network or the Internet.

Some users have created their own console servers using off-the-shelf commodity computer hardware, usually with multiport serial cards typically running a slimmed-down Unix-like operating system such as Linux. Such "home-grown" console servers can be less expensive, especially if built from components that have been retired in upgrades and allow greater flexibility by putting full control of the software driving the device in the hands of the administrator. This includes full access to and configurability of a wide array of security protocols and encryption standards, making it possible to create a console server that is more secure. However, this solution may have a higher TCO, less reliability and higher rack-space requirements, since most industrial console servers have the physical dimension of one rack unit (1U), whereas a desktop computer with full-size PCI cards requires at least 3U, making the home-grown solution more costly in the case of a co-located infrastructure.

An alternative approach to a console server used in some cluster setups is to null-modem wire and daisy-chain consoles to otherwise unused serial ports on nodes with some other primary function.

See also

External links

Notes and References

  1. Kirstein. Peter T.. Peter T. Kirstein. July–September 2009. The Early Days of the Arpanet. IEEE Annals of the History of Computing. 31. 3. 67. 10.1109/mahc.2009.35. 1058-6180.