Ellipsoidal coordinates explained
that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional
orthogonal coordinate systems that feature
quadratic coordinate surfaces, the ellipsoidal coordinate system is based on confocal quadrics.
Basic formulae
The Cartesian coordinates
can be produced from the ellipsoidal coordinates
by the equations
x2=
| \left(a2+λ\right)\left(a2+\mu\right)\left(a2+\nu\right) |
\left(a2-b2\right)\left(a2-c2\right) |
y2=
| \left(b2+λ\right)\left(b2+\mu\right)\left(b2+\nu\right) |
\left(b2-a2\right)\left(b2-c2\right) |
z2=
| \left(c2+λ\right)\left(c2+\mu\right)\left(c2+\nu\right) |
\left(c2-b2\right)\left(c2-a2\right) |
where the following limits apply to the coordinates
Consequently, surfaces of constant
are
ellipsoids
whereas surfaces of constant
are
hyperboloids of one sheet
because the last term in the lhs is negative, and surfaces of constant
are
hyperboloids of two sheets
because the last two terms in the lhs are negative.
The orthogonal system of quadrics used for the ellipsoidal coordinates are confocal quadrics.
Scale factors and differential operators
For brevity in the equations below, we introduce a function
}\ \left(a^ + \sigma \right) \left(b^ + \sigma \right) \left(c^ + \sigma \right)
where
can represent any of the three variables
. Using this function, the scale factors can be written
hλ=
| \left(λ-\mu\right)\left(λ-\nu\right) |
S(λ) |
}
h\mu=
| \left(\mu-λ\right)\left(\mu-\nu\right) |
S(\mu) |
}
h\nu=
| \left(\nu-λ\right)\left(\nu-\mu\right) |
S(\nu) |
}
Hence, the infinitesimal volume element equals
dV=
| \left(λ-\mu\right)\left(λ-\nu\right)\left(\mu-\nu\right) |
8\sqrt{-S(λ)S(\mu)S(\nu) |
} \, d\lambda \, d\mu \, d\nu
and the Laplacian is defined by
\begin{align}
\nabla2\Phi={}&
}\frac \left[\sqrt{S(\lambda)} \frac{\partial \Phi}{\partial \lambda} \right] \\[1ex]& +\frac\frac \left[\sqrt{S(\mu)} \frac{\partial \Phi}{\partial \mu} \right] \\[1ex]& +\frac\frac \left[\sqrt{S(\nu)} \frac{\partial \Phi}{\partial \nu} \right]\end
Other differential operators such as
and
can be expressed in the coordinates
by substituting the scale factors into the general formulae found in
orthogonal coordinates.
Angular parametrization
An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates:[1]
Here,
parametrizes the concentric ellipsoids around the origin and
and
are the usual polar and azimuthal angles of spherical coordinates, respectively. The corresponding volume element is
dxdydz=abcs2\sin\thetadsd\thetad\phi.
See also
Bibliography
- Book: Morse PM, Feshbach H . 1953 . Methods of Theoretical Physics, Part I . McGraw-Hill . New York . 663.
- Book: Zwillinger D . 1992 . Handbook of Integration . Jones and Bartlett . Boston, MA . 0-86720-293-9 . 114.
- Book: Sauer R, Szabó I . 1967 . Mathematische Hilfsmittel des Ingenieurs . Springer Verlag . New York . 101 - 102 . 67025285.
- Book: . 1961 . Mathematical Handbook for Scientists and Engineers . registration . McGraw-Hill . New York . 176 . 59014456.
- Book: Margenau H, Murphy GM . 1956 . The Mathematics of Physics and Chemistry . limited . D. van Nostrand . New York. 178 - 180 . 55010911 .
- Book: Moon PH, Spencer DE . 1988 . Ellipsoidal Coordinates (η, θ, λ) . Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions . limited . corrected 2nd, 3rd print . Springer Verlag . New York . 0-387-02732-7 . 40 - 44 (Table 1.10).
Unusual convention
- Book: Landau LD, Lifshitz EM, Pitaevskii LP . 1984 . Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics) . 2nd . Pergamon Press . New York . 978-0-7506-2634-7 . 19 - 29 . Uses (ξ, η, ζ) coordinates that have the units of distance squared.
External links
Notes and References
- Web site: Ellipsoid Quadrupole Moment.