Concave function explained
In mathematics, a concave function is one for which the value at any convex combination of elements in the domain is greater than or equal to the convex combination of the values at the endpoints. Equivalently, a concave function is any function for which the hypograph is convex. The class of concave functions is in a sense the opposite of the class of convex functions. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.
Definition
on an
interval (or, more generally, a
convex set in
vector space) is said to be
concave if, for any
and
in the interval and for any
,
[1] f((1-\alpha)x+\alphay)\geq(1-\alpha)f(x)+\alphaf(y)
A function is called strictly concave if
f((1-\alpha)x+\alphay)>(1-\alpha)f(x)+\alphaf(y)
for any
and
.
For a function
, this second definition merely states that for every
strictly between
and
, the point
on the graph of
is above the straight line joining the points
and
.
A function
is
quasiconcave if the upper contour sets of the function
are convex sets.
[2] Properties
Functions of a single variable
- A differentiable function is (strictly) concave on an interval if and only if its derivative function is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope.[3] [4]
- Points where concavity changes (between concave and convex) are inflection points.[5]
- If is twice-differentiable, then is concave if and only if is non-positive (or, informally, if the "acceleration" is non-positive). If is negative then is strictly concave, but the converse is not true, as shown by .
- If is concave and differentiable, then it is bounded above by its first-order Taylor approximation:
- A Lebesgue measurable function on an interval is concave if and only if it is midpoint concave, that is, for any and in
- If a function is concave, and, then is subadditive on
. Proof:
- Since is concave and, letting we have
- For
:
Functions of n variables
- A function is concave over a convex set if and only if the function is a convex function over the set.
- The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
- Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave function is zero at some point, then that point is a local maximum.
- Any local maximum of a concave function is also a global maximum. A strictly concave function will have at most one global maximum.
Examples
and
are concave on their domains, as their second derivatives
and
are always negative.
is concave on its domain
, as its derivative
is a strictly decreasing function.
is both concave and convex, but neither strictly-concave nor strictly-convex.
- The sine function is concave on the interval
.
, where
is the
determinant of a
nonnegative-definite matrix B, is concave.
[6] Applications
- Rays bending in the computation of radiowave attenuation in the atmosphere involve concave functions.
- In expected utility theory for choice under uncertainty, cardinal utility functions of risk averse decision makers are concave.
- In microeconomic theory, production functions are usually assumed to be concave over some or all of their domains, resulting in diminishing returns to input factors.[7]
- In Thermodynamics and Information Theory, Entropy is a concave function. In the case of thermodynamic entropy, without phase transition, entropy as a function of extensive variables is strictly concave. If the system can undergo phase transition, and if it is allowed to split into two subsystems of different phase (phase separation, e.g. boiling), the entropy-maximal parameters of the subsystems will result in a combined entropy precisely on the straight line between the two phases. This means that the "Effective Entropy" of a system with phase transition is the convex envelope of entropy without phase separation; therefore, the entropy of a system including phase separation will be non-strictly concave.[8]
See also
Further References
- Book: Crouzeix, J.-P.. Quasi-concavity. The New Palgrave Dictionary of Economics. Steven N.. Durlauf. Lawrence E. Blume. Palgrave Macmillan. 2008. Second. 815–816. http://www.dictionaryofeconomics.com/article?id=pde2008_Q000008. 10.1057/9780230226203.1375. 978-0-333-78676-5.
- Book: Rao, Singiresu S.. Engineering Optimization: Theory and Practice. John Wiley and Sons. 2009. 978-0-470-18352-6. 779.
Notes and References
- Book: Lenhart . S. . Workman . J. T. . Optimal Control Applied to Biological Models . Chapman & Hall/ CRC . Mathematical and Computational Biology Series . 2007 . 978-1-58488-640-2 .
- Book: Varian, Hal R.. Microeconomic analysis. 1992. Norton. 0-393-95735-7. 3rd. New York. 489. 24847759.
- Book: Rudin, Walter. Analysis. 1976. 101.
- Gradshteyn. I. S.. Ryzhik. I. M.. Hays. D. F.. 1976-07-01. Table of Integrals, Series, and Products. Journal of Lubrication Technology. 98. 3. 479. 10.1115/1.3452897. 0022-2305 . free.
- Book: Hass, Joel . Thomas' calculus. Heil, Christopher, 1960-, Weir, Maurice D.,, Thomas, George B. Jr. (George Brinton), 1914-2006.. 13 March 2017. 978-0-13-443898-6. Fourteenth. [United States]. 203. 965446428.
- Thomas M. Cover . Thomas M. . Cover . J. A. . Thomas . 5491763 . Determinant inequalities via information theory. SIAM Journal on Matrix Analysis and Applications. 1988. 9. 3. 384 - 392. 10.1137/0609033.
- Book: Malcolm . Pemberton . Nicholas . Rau . Mathematics for Economists: An Introductory Textbook . Oxford University Press . 2015 . 978-1-78499-148-7 . 363–364 .
- Book: Callen . Herbert B. . Thermodynamics and an introduction to thermostatistics . Callen . Herbert B. . 1985 . Wiley . 978-0-471-86256-7 . 2nd . New York . 203–206 . 8.1: Intrinsic Stability of Thermodynamic Systems.