A compound Poisson process is a continuous-time stochastic process with jumps. The jumps arrive randomly according to a Poisson process and the size of the jumps is also random, with a specified probability distribution. To be precise, a compound Poisson process, parameterised by a rate
λ>0
\{Y(t):t\geq0\}
Y(t)=
N(t) | |
\sum | |
i=1 |
Di
where,
\{N(t):t\geq0\}
λ
\{Di:i\geq1\}
\{N(t):t\geq0\}.
When
Di
The expected value of a compound Poisson process can be calculated using a result known as Wald's equation as:
\operatornameE(Y(t))=\operatornameE(D1+ … +DN(t))=\operatornameE(N(t))\operatornameE(D1)=\operatornameE(N(t))\operatornameE(D)=λt\operatornameE(D).
Making similar use of the law of total variance, the variance can be calculated as:
\begin{align} \operatorname{var}(Y(t))&=\operatornameE(\operatorname{var}(Y(t)\midN(t)))+\operatorname{var}(\operatornameE(Y(t)\midN(t)))\\[5pt] &=\operatornameE(N(t)\operatorname{var}(D))+\operatorname{var}(N(t)\operatornameE(D))\\[5pt] &=\operatorname{var}(D)\operatornameE(N(t))+\operatornameE(D)2\operatorname{var}(N(t))\\[5pt] &=\operatorname{var}(D)λt+\operatornameE(D)2λt\\[5pt] &=λt(\operatorname{var}(D)+\operatornameE(D)2)\\[5pt] &=λt\operatornameE(D2). \end{align}
Lastly, using the law of total probability, the moment generating function can be given as follows:
\Pr(Y(t)=i)=\sumn\Pr(Y(t)=i\midN(t)=n)\Pr(N(t)=n)
\begin{align} \operatornameE(esY)&=\sumiesi\Pr(Y(t)=i)\\[5pt] &=\sumiesi\sumn\Pr(Y(t)=i\midN(t)=n)\Pr(N(t)=n)\\[5pt] &=\sumn\Pr(N(t)=n)\sumiesi\Pr(Y(t)=i\midN(t)=n)\\[5pt] &=\sumn\Pr(N(t)=n)\sumiesi\Pr(D1+D2+ … +Dn=i)\\[5pt] &=\sumn\Pr(N(t)=n)
n | |
M | |
D(s) |
\\[5pt] &=\sumn\Pr(N(t)=n)
nln(MD(s)) | |
e |
\\[5pt] &=MN(t)(ln(MD(s)))\\[5pt] &=
λt\left(MD(s)-1\right) | |
e |
. \end{align}
Let N, Y, and D be as above. Let μ be the probability measure according to which D is distributed, i.e.
\mu(A)=\Pr(D\inA).
Let δ0 be the trivial probability distribution putting all of the mass at zero. Then the probability distribution of Y(t) is the measure
\exp(λt(\mu-\delta0))
where the exponential exp(ν) of a finite measure ν on Borel subsets of the real line is defined by
\exp(\nu)=
infty | |
\sum | |
n=0 |
{\nu*n\overn!}
and
\nu*n=\underbrace{\nu* … *\nu}n
is a convolution of measures, and the series converges weakly.