In algebraic topology, a complex-orientable cohomology theory is a multiplicative cohomology theory E such that the restriction map
E2(CPinfty)\toE2(CP1)
E2(CPinfty)
\widetilde{E}2(CP1)
If E is an even-graded theory meaning
\pi3E=\pi5E= …
Examples:
\operatorname{H}2(CPinfty;R)\simeq\operatorname{H}2(CP1;R)
A complex orientation, call it t, gives rise to a formal group law as follows: let m be the multiplication
CPinfty x CPinfty\toCPinfty,([x],[y])\mapsto[xy]
[x]
C[t]
CPinfty
CPinfty
E*(CPinfty)=\varprojlimE*(CPn)=\varprojlimR[t]/(tn+1)=R[[t]], R=\pi*E
f=m*(t)
E*(CPinfty x CPinfty)=\varprojlimE*(CPn x CPm)=\varprojlimR[x,y]/(xn+1,ym+1)=R[[x,y]]