Complete Fermi–Dirac integral explained
In mathematics, the complete Fermi–Dirac integral, named after Enrico Fermi and Paul Dirac, for an index j is defined by
This equals
-\operatorname{Li}j+1(-ex),
where
is the
polylogarithm.
Its derivative is
and this derivative relationship is used to define the Fermi-Dirac integral for nonpositive indices
j. Differing notation for
appears in the literature, for instance some authors omit the factor
. The definition used here matches that in the
NIST DLMF.
Special values
The closed form of the function exists for j = 0:
For x = 0, the result reduces to
where
is the
Dirichlet eta function.
See also
References
- Book: Izrail Solomonovich . Gradshteyn . Izrail Solomonovich Gradshteyn . Iosif Moiseevich . Ryzhik . Iosif Moiseevich Ryzhik . Yuri Veniaminovich . Geronimus . Yuri Veniaminovich Geronimus . Michail Yulyevich . Tseytlin . Michail Yulyevich Tseytlin . Alan . Jeffrey . Daniel . Zwillinger . Victor Hugo . Moll . Victor Hugo Moll . Scripta Technica, Inc. . Table of Integrals, Series, and Products . . 2015 . October 2014 . 8 . English . 978-0-12-384933-5 . . 2014010276 . 2016-02-21-->. Gradshteyn and Ryzhik . 3.411.3. . 355.
- Book: Fermi-Dirac Integrals. R.B.Dingle. Appl.Sci.Res. B6. 1957. 225–239.
External links