Complementarity (physics) explained

In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory.[1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously. For example, position and momentum or wave and particle properties. In contemporary terms, complementarity encompasses both the uncertainty principle and wave-particle duality.

Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.[3]

History

Background

Complementarity as a physical model derives from Niels Bohr's 1927 presentation in Como, Italy, at a scientific celebration of the work of Alessandro Volta 100 years previous.[4] Bohr's subject was complementarity, the idea that measurements of quantum events provide complementary information through seemingly contradictory results.[5] While Bohr's presentation was not well received, it did crystallize the issues ultimately leading to the modern wave-particle duality concept.[6] The contradictory results that triggered Bohr's ideas had been building up over the previous 20 years.

This contradictory evidence came both from light and from electrons.The wave theory of light, broadly successful for over a hundred years, had been challenged by Planck's 1901 model of blackbody radiation and Einstein's 1905 interpretation of the photoelectric effect. These theoretical models use discrete energy, a quantum, to describe the interaction of light with matter. Despite confirmation by various experimental observations, the photon theory (as it came to be called later) remained controversial until Arthur Compton performed a series of experiments from 1922 to 1924 demonstrating the momentum of light.[7] The experimental evidence of particle-like momentum seemingly contradicted other experiments demonstrating the wave-like interference of light.

The contradictory evidence from electrons arrived in the opposite order. Many experiments by J. J. Thompson, Robert Millikan, and Charles Wilson, among others, had shown that free electrons had particle properties. However, in 1924, Louis de Broglie proposed that electrons had an associated wave and Schrödinger demonstrated that wave equations accurately account for electron properties in atoms. Again some experiments showed particle properties and others wave properties.

Bohr's resolution of these contradictions is to accept them. In his Como lecture he says: "our interpretation of the experimental material rests essentially upon theclassical concepts."[5] Direct observation being impossible, observations of quantum effects are necessarily classical. Whatever the nature of quantum events, our only information will arrive via classical results. If experiments sometimes produce wave results and sometimes particle results, that is the nature of light and of the ultimate constituents of matter.

Bohr's lectures

Niels Bohr apparently conceived of the principle of complementarity during a skiing vacation in Norway in February and March 1927, during which he received a letter from Werner Heisenberg regarding an as-yet-unpublished result, a thought experiment about a microscope using gamma rays. This thought experiment implied a tradeoff between uncertainties that would later be formalized as the uncertainty principle. To Bohr, Heisenberg's paper did not make clear the distinction between a position measurement merely disturbing the momentum value that a particle carried and the more radical idea that momentum was meaningless or undefinable in a context where position was measured instead. Upon returning from his vacation, by which time Heisenberg had already submitted his paper for publication, Bohr convinced Heisenberg that the uncertainty tradeoff was a manifestation of the deeper concept of complementarity.[8] Heisenberg duly appended a note to this effect to his paper, before its publication, stating:

Bohr has brought to my attention [that] the uncertainty in our observation does not arise exclusively from the occurrence of discontinuities, but is tied directly to the demand that we ascribe equal validity to the quite different experiments which show up in the [particulate] theory on one hand, and in the wave theory on the other hand.

Bohr publicly introduced the principle of complementarity in a lecture he delivered on 16 September 1927 at the International Physics Congress held in Como, Italy, attended by most of the leading physicists of the era, with the notable exceptions of Einstein, Schrödinger, and Dirac. However, these three were in attendance one month later when Bohr again presented the principle at the Fifth Solvay Congress in Brussels, Belgium. The lecture was published in the proceedings of both of these conferences, and was republished the following year in Naturwissenschaften (in German) and in Nature (in English).[9]

In his original lecture on the topic, Bohr pointed out that just as the finitude of the speed of light implies the impossibility of a sharp separation between space and time (relativity), the finitude of the quantum of action implies the impossibility of a sharp separation between the behavior of a system and its interaction with the measuring instruments and leads to the well-known difficulties with the concept of 'state' in quantum theory; the notion of complementarity is intended to capture this new situation in epistemology created by quantum theory. Physicists F.A.M. Frescura and Basil Hiley have summarized the reasons for the introduction of the principle of complementarity in physics as follows:[10]

Debate following the lectures

See main article: Bohr–Einstein debates.

Complementarity was a central feature of Bohr's reply to the EPR paradox, an attempt by Albert Einstein, Boris Podolsky and Nathan Rosen to argue that quantum particles must have position and momentum even without being measured and so quantum mechanics must be an incomplete theory.[11] The thought experiment proposed by Einstein, Podolsky and Rosen involved producing two particles and sending them far apart. The experimenter could choose to measure either the position or the momentum of one particle. Given that result, they could in principle make a precise prediction of what the corresponding measurement on the other, faraway particle would find. To Einstein, Podolsky and Rosen, this implied that the faraway particle must have precise values of both quantities whether or not that particle is measured in any way. Bohr argued in response that the deduction of a position value could not be transferred over to the situation where a momentum value is measured, and vice versa.[12]

Later expositions of complementarity by Bohr include a 1938 lecture in Warsaw[13] [14] and a 1949 article written for a festschrift honoring Albert Einstein.[15] It was also covered in a 1953 essay by Bohr's collaborator Léon Rosenfeld.[16]

Mathematical formalism

For Bohr, complementarity was the "ultimate reason" behind the uncertainty principle. All attempts to grapple with atomic phenomena using classical physics were eventually frustrated, he wrote, leading to the recognition that those phenomena have "complementary aspects". But classical physics can be generalized to address this, and with "astounding simplicity", by describing physical quantities using non-commutative algebra. This mathematical expression of complementarity builds on the work of Hermann Weyl and Julian Schwinger, starting with Hilbert spaces and unitary transformation, leading to the theorems of mutually unbiased bases.[17]

In the mathematical formulation of quantum mechanics, physical quantities that classical mechanics had treated as real-valued variables become self-adjoint operators on a Hilbert space. These operators, called "observables", can fail to commute, in which case they are called "incompatible":\left[\hat{A}, \hat{B}\right] := \hat\hat - \hat\hat \neq \hat.Incompatible observables cannot have a complete set of common eigenstates; there can be some simultaneous eigenstates of

\hat{A}

and

\hat{B}

, but not enough in number to constitute a complete basis.[18] [19] The canonical commutation relation\left[\hat{x}, \hat{p}\right] = i\hbarimplies that this applies to position and momentum. In a Bohrian view, this is a mathematical statement that position and momentum are complementary aspects. Likewise, an analogous relationship holds for any two of the spin observables defined by the Pauli matrices; measurements of spin along perpendicular axes are complementary. The Pauli spin observables are defined for a quantum system described by a two-dimensional Hilbert space; mutually unbiased bases generalize these observables to Hilbert spaces of arbitrary finite dimension.[20] Two bases

\{|aj\rangle\}

and

\{|bk\rangle\}

for an

N

-dimensional Hilbert space are mutually unbiased when|\langle a_j|b_k \rangle|^2 = \frac\ \text\ j, k = 1, ... N-1.

Here the basis vector

a1

, for example, has the same overlap with every

bk

; there is equal transition probability between a state in one basis and any state in the other basis. Each basis corresponds to an observable, and the observables for two mutually unbiased bases are complementary to each other.[20] This leads to the description of complementarity as a statement about quantum kinematics:The concept of complementarity has also been applied to quantum measurements described by positive-operator-valued measures (POVMs).[21] [22]

Continuous complementarity

See main article: Wave–particle duality relation. While the concept of complementarity can be discussed via two experimental extremes, continuous tradeoff is also possible.[23] The wave-particle relation, introduced by Daniel Greenberger and Allaine Yasin in 1988, and since then refined by others,[24] quantifies the trade-off between measuring particle path distinguishability,

D

, and wave interference fringe visibility,

V

:D^2 + V^2\ \le\ 1The values of

D

and

V

can vary between 0 and 1 individually, but any experiment that combines particle and wave detection will limit one or the other, or both. The detailed definition of the two terms vary among applications,[24] but the relation expresses the verified constraint that efforts to detect particle paths will result in less visible wave interference.

Modern role

While many of the early discussions of complementarity discussed hypothetical experiments, advances in technology have allowed advanced tests of this concept. Experiments like the quantum eraser verify the key ideas in complementarity; modern exploration of quantum entanglement builds directly on complementarity:[25] In his Nobel lecture, physicist Julian Schwinger linked complementarity to quantum field theory:

The Consistent histories interpretation of quantum mechanics takes a generalized form of complementarity as a key defining postulate.[26]

See also

Further reading

External links

Notes and References

  1. Wheeler. John A.. John Archibald Wheeler. January 1963. "No Fugitive and Cloistered Virtue"—A tribute to Niels Bohr. . 16 . 1 . 30 . 1963PhT....16a..30W . 10.1063/1.3050711.
  2. Who invented the Copenhagen Interpretation? A study in mythology . 2004 . Howard . Don . Philosophy of Science . 669–682 . 10.1086/425941 . 71 . 5 . 10.1086/425941. 10.1.1.164.9141 . 9454552 .
  3. Book: Niels . Bohr . Niels Bohr . Léon Rosenfeld . Léon . Rosenfeld . Foundations of Quantum Physics II (1933–1958) . https://books.google.com/books?id=yet5P7f_63oC&pg=PA284 . Niels Bohr Collected Works . 7 . 1996 . Elsevier . 978-0-444-89892-0 . 284–285 . Complementarity: Bedrock of the Quantal Description.
  4. Book: Baggott, J. E. . The quantum story: a history in 40 moments . 2013 . Oxford Univ. Press . 978-0-19-965597-7 . Impression: 3 . Oxford.
  5. 10.1038/121580a0. The Quantum Postulate and the Recent Development of Atomic Theory. 1928. Bohr. N.. Nature. 121. 3050. 580–590. 1928Natur.121..580B. free.
  6. Book: Kumar, Manjit . Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality . W. W. Norton & Company . Reprint . 2011 . 242, 375–376 . 978-0-393-33988-8 .
  7. Book: Whittaker, Edmund T. . A history of the theories of aether & electricity. 2: The modern theories, 1900 - 1926 . 1989 . Dover Publ . 978-0-486-26126-3 . Repr . New York.
  8. Book: Baggott, Jim. The Quantum Story: A History in 40 moments. Oxford University Press. 2011. 978-0-19-956684-6. Oxford Landmark Science. Oxford. 97. Jim Baggott.
  9. Bohr . N. . The Quantum Postulate and the Recent Development of Atomic Theory . . 121 . 3050 . 580–590 . 1928 . 10.1038/121580a0. 1928Natur.121..580B. free . Available in the collection of Bohr's early writings, Atomic Theory and the Description of Nature (1934).
  10. F. A. M. . Frescura . Basil Hiley . B. J. . Hiley . Algebras, quantum theory and pre-space . Revista Brasileira de Física . Special volume "Os 70 anos de Mario Schonberg" . 49–86, 2 . July 1984.
  11. Christopher A. . Fuchs . Notwithstanding Bohr: The Reasons for QBism . Mind and Matter . 15 . 245–300 . 2017 . 1705.03483 . 2017arXiv170503483F.
  12. Book: Jammer, Max. The Philosophy of Quantum Mechanics. John Wiley and Sons. 1974. 0-471-43958-4. Max Jammer.
  13. Book: Bohr, Niels . Niels Bohr . The causality problem in atomic physics . New theories in physics . International Institute of Intellectual Co-operation . Paris . 1939 . 11–38.
  14. Book: Chevalley, Catherine . Why Do We Find Bohr Obscure? . Epistemological and Experimental Perspectives on Quantum Physics . Daniel . Greenberger . Wolfgang L. . Reiter . Anton . Zeilinger . Springer Science+Business Media . 10.1007/978-94-017-1454-9 . 978-9-04815-354-1 . 1999 . 59–74.
  15. Book: Bohr, Niels. Albert Einstein: Philosopher-Scientist. Open Court. 1949. Schilpp. Paul Arthur. Paul Arthur Schilpp. Discussions with Einstein on Epistemological Problems in Atomic Physics. Niels Bohr.
  16. Rosenfeld. L.. 1953. Strife about Complementarity. Science Progress (1933-). 41. 163. 393–410. 43414997 . 0036-8504.
  17. Durt . Thomas . Englert . Berthold-Georg . Bengtsson . Ingemar . żYczkowski . Karol . 2010-06-01 . On Mutually Unbiased Bases . International Journal of Quantum Information . en . 08 . 4 . 535–640 . 10.1142/S0219749910006502 . 0219-7499. 1004.3348 . 118551747 .
  18. Book: Griffiths, David J. . Introduction to Quantum Mechanics . Introduction to Quantum Mechanics (book) . 2017 . Cambridge University Press . 978-1-107-17986-8 . 111 . en . David J. Griffiths.
  19. Book: Cohen-Tannoudji . Claude . Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications . Diu . Bernard . Laloë . Franck . 2019-12-04 . Wiley . 978-3-527-34553-3 . 232 . en . Claude Cohen-Tannoudji.
  20. Book: Mutually unbiased bases are complex projective 2-designs . Proceedings. International Symposium on Information Theory, 2005 . A. . Klappenecker . M. . Rotteler . 2005 . 1740–1744 . en-US . 10.1109/isit.2005.1523643 . IEEE . 0-7803-9151-9. 5981977 .
  21. Busch . P. . Paul Busch (physicist) . Shilladay . C. R. . 2003-09-19 . Uncertainty reconciles complementarity with joint measurability . Physical Review A . en . 68 . 3 . 034102 . 10.1103/PhysRevA.68.034102 . 1050-2947. quant-ph/0207081 . 2003PhRvA..68c4102B . 119482431 .
  22. Luis . Alfredo . 2002-05-22 . Complementarity for Generalized Observables . Physical Review Letters . en . 88 . 23 . 230401 . 10.1103/PhysRevLett.88.230401 . 12059339 . 2002PhRvL..88w0401L . 0031-9007.
  23. Englert . Berthold-Georg . 1999-01-01 . Remarks on Some Basic Issues in Quantum Mechanics . Zeitschrift für Naturforschung A . en . 54 . 1 . 11–32 . 10.1515/zna-1999-0104 . 1865-7109. free . 1999ZNatA..54...11E .
  24. Sen . D. . The Uncertainty relations in quantum mechanics . Current Science . 107. 2. 2014. 203–218 . 24103129 .
  25. Zeilinger . Anton . 1999-03-01 . Experiment and the foundations of quantum physics . Reviews of Modern Physics . en . 71 . 2 . S288–S297 . 10.1103/RevModPhys.71.S288 . 1999RvMPS..71..288Z . 0034-6861.
  26. Hohenberg . P. C. . 2010-10-05 . Colloquium : An introduction to consistent quantum theory . Reviews of Modern Physics . en . 82 . 4 . 2835–2844 . 10.1103/RevModPhys.82.2835 . 0034-6861. 0909.2359 . 2010RvMP...82.2835H . 20551033 .