In topology, a branch of mathematics, an extension topology is a topology placed on the disjoint union of a topological space and another set. There are various types of extension topology, described in the sections below.
Let X be a topological space and P a set disjoint from X. Consider in X ∪ P the topology whose open sets are of the form A ∪ Q, where A is an open set of X and Q is a subset of P.
The closed sets of X ∪ P are of the form B ∪ Q, where B is a closed set of X and Q is a subset of P.
For these reasons this topology is called the extension topology of X plus P, with which one extends to X ∪ P the open and the closed sets of X. As subsets of X ∪ P the subspace topology of X is the original topology of X, while the subspace topology of P is the discrete topology. As a topological space, X ∪ P is homeomorphic to the topological sum of X and P, and X is a clopen subset of X ∪ P.
If Y is a topological space and R is a subset of Y, one might ask whether the extension topology of Y – R plus R is the same as the original topology of Y, and the answer is in general no.
Note the similarity of this extension topology construction and the Alexandroff one-point compactification, in which case, having a topological space X which one wishes to compactify by adding a point ∞ in infinity, one considers the closed sets of X ∪ to be the sets of the form K, where K is a closed compact set of X, or B ∪ , where B is a closed set of X.
Let
(X,l{T})
P
X
l{T}
P
X*=X\cupP
l{T}*
X*
X
X
l{T}*|X=l{T}
P
l{T}*|P=l{P}(P)
The closed sets in
X*
\{B\cupP:X\subsetB\landX\setminusB\inl{T}\}
P
X*
X
X*
If Y a topological space and R is a subset of Y, one might ask whether the open extension topology of Y – R plus R is the same as the original topology of Y, and the answer is in general no.
Note that the open extension topology of
X*
X*
Assuming
X
P
X
X*
P
X*
X*
X
X*
P
X*
For a set Z and a point p in Z, one obtains the excluded point topology construction by considering in Z the discrete topology and applying the open extension topology construction to Z – plus p.
Let X be a topological space and P a set disjoint from X. Consider in X ∪ P the topology whose closed sets are of the form X ∪ Q, where Q is a subset of P, or B, where B is a closed set of X.
For this reason this topology is called the closed extension topology of X plus P, with which one extends to X ∪ P the closed sets of X. As subsets of X ∪ P the subspace topology of X is the original topology of X, while the subspace topology of P is the discrete topology.
The open sets of X ∪ P are of the form Q, where Q is a subset of P, or A ∪ P, where A is an open set of X. Note that P is open in X ∪ P and X is closed in X ∪ P.
If Y is a topological space and R is a subset of Y, one might ask whether the closed extension topology of Y – R plus R is the same as the original topology of Y, and the answer is in general no.
Note that the closed extension topology of X ∪ P is smaller than the extension topology of X ∪ P.
For a set Z and a point p in Z, one obtains the particular point topology construction by considering in Z the discrete topology and applying the closed extension topology construction to Z – plus p.