Classical Lie algebras explained
The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types
,
,
and
, where for
the
general linear Lie algebra and
the
identity matrix:
An:=ak{sl}(n+1)=\{x\inak{gl}(n+1):tr(x)=0\}
, the
special linear Lie algebra;
Bn:=ak{so}(2n+1)=\{x\inak{gl}(2n+1):x+xT=0\}
, the
odd-dimensional orthogonal Lie algebra;
Cn:=ak{sp}(2n)=\{x\inak{gl}(2n):Jnx+xTJn=0,Jn=\begin{pmatrix}0&In\ -In&0\end{pmatrix}\}
, the
symplectic Lie algebra; and
Dn:=ak{so}(2n)=\{x\inak{gl}(2n):x+xT=0\}
, the
even-dimensional orthogonal Lie algebra.
Except for the low-dimensional cases
and
, the classical Lie algebras are
simple.
[1] [2] The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras.
See also
Notes and References
- Book: Dictionary on Lie algebras and superalgebras. Antonino. Sciarrino. Paul. Sorba. 2000-01-01. Academic Press. 9780122653407. 468609320.
- Book: Sthanumoorthy, Neelacanta. Introduction to finite and infinite dimensional lie (super)algebras. 18 April 2016. Amsterdam Elsevie. 9780128046753. 952065417.