Classical Lie algebras explained

The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types

An

,

Bn

,

Cn

and

Dn

, where for

ak{gl}(n)

the general linear Lie algebra and

In

the

n x n

identity matrix:

An:=ak{sl}(n+1)=\{x\inak{gl}(n+1):tr(x)=0\}

, the special linear Lie algebra;

Bn:=ak{so}(2n+1)=\{x\inak{gl}(2n+1):x+xT=0\}

, the odd-dimensional orthogonal Lie algebra;

Cn:=ak{sp}(2n)=\{x\inak{gl}(2n):Jnx+xTJn=0,Jn=\begin{pmatrix}0&In\ -In&0\end{pmatrix}\}

, the symplectic Lie algebra; and

Dn:=ak{so}(2n)=\{x\inak{gl}(2n):x+xT=0\}

, the even-dimensional orthogonal Lie algebra.

Except for the low-dimensional cases

D1=ak{so}(2)

and

D2=ak{so}(4)

, the classical Lie algebras are simple.[1] [2]

The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras.

See also

Notes and References

  1. Book: Dictionary on Lie algebras and superalgebras. Antonino. Sciarrino. Paul. Sorba. 2000-01-01. Academic Press. 9780122653407. 468609320.
  2. Book: Sthanumoorthy, Neelacanta. Introduction to finite and infinite dimensional lie (super)algebras. 18 April 2016. Amsterdam Elsevie. 9780128046753. 952065417.