See also: Chi-squared distribution. In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. It is thus related to the chi-squared distribution by describing the distribution of the positive square roots of a variable obeying a chi-squared distribution.
If
Z1,\ldots,Zk
k
Y=
k | |
\sqrt{\sum | |
i=1 |
2} | |
Z | |
i |
is distributed according to the chi distribution. The chi distribution has one positive integer parameter
k
Zi
The most familiar examples are the Rayleigh distribution (chi distribution with two degrees of freedom) and the Maxwell–Boltzmann distribution of the molecular speeds in an ideal gas (chi distribution with three degrees of freedom).
The probability density function (pdf) of the chi-distribution is
f(x;k)=\begin{cases} \dfrac{xk-1
-x2/2 | |
e |
where
\Gamma(z)
The cumulative distribution function is given by:
F(x;k)=P(k/2,x2/2)
where
P(k,x)
The moment-generating function is given by:
M(t)=M\left( | k | , |
2 |
1 | , | |
2 |
t2 | \right)+t\sqrt{2} | |
2 |
\Gamma((k+1)/2) | M\left( | |
\Gamma(k/2) |
k+1 | , | |
2 |
3 | , | |
2 |
t2 | |
2 |
\right),
where
M(a,b,z)
\varphi(t;k)=M\left( | k | , |
2 |
1 | , | |
2 |
-t2 | |
2 |
\right)+it\sqrt{2}
\Gamma((k+1)/2) | M\left( | |
\Gamma(k/2) |
k+1 | , | |
2 |
3 | , | |
2 |
-t2 | |
2 |
\right).
The raw moments are then given by:
\muj=
infty | |
\int | |
0 |
f(x;k)xjdx=2j/2
\Gamma\left(\tfrac{1 | |
2 |
(k+j)\right) }{\Gamma\left(\tfrac{1}{2}k\right)}
where
\Gamma(z)
\mu1=\sqrt{2 }
\Gamma\left(\tfrac{1 | |
2 |
(k+1)\right) }{\Gamma\left(\tfrac{1}{2}k\right)}
\mu2=k ,
\mu | ||||
|
(k+3)\right) }{\Gamma\left(\tfrac{1}{2}k\right)}=(k+1) \mu1 ,
\mu4=(k)(k+2) ,
\mu5=4\sqrt{2 }
\Gamma\left(\tfrac{1 | |
2 |
(k+5)\right) }{\Gamma\left(\tfrac{1}{2}k\right)}=(k+1)(k+3) \mu1 ,
\mu6=(k)(k+2)(k+4) ,
where the rightmost expressions are derived using the recurrence relationship for the gamma function:
\Gamma(x+1)=x \Gamma(x)~.
From these expressions we may derive the following relationships:
Mean:
\mu=\sqrt{2 }
\Gamma\left(\tfrac{1 | |
2 |
(k+1)\right) }{\Gamma\left(\tfrac{1}{2}k\right)} ,
\sqrt{k-\tfrac{1}{2} }
Variance:
V=k-\mu2 ,
\tfrac{1}{2}
Skewness:
\gamma1=
\mu | |
\sigma3 |
\left(1-2\sigma2\right)~.
Kurtosis excess:
\gamma2=
2 | |
\sigma2 |
\left(1-\mu \sigma \gamma1-\sigma2\right)~.
The entropy is given by:
S=ln(\Gamma(k/2))+ | 1 |
2 |
(k-ln(2)-(k-1)\psi0(k/2))
where
\psi0(z)
We find the large n=k+1 approximation of the mean and variance of chi distribution. This has application e.g. in finding the distribution of standard deviation of a sample of normally distributed population, where n is the sample size.
The mean is then:
\mu=\sqrt{2}
\Gamma(n/2) | |
\Gamma((n-1)/2) |
2n-2\Gamma((n-1)/2) ⋅ \Gamma(n/2)=\sqrt{\pi}\Gamma(n-1)
\mu=\sqrt{2/\pi}2n-2
(\Gamma(n/2))2 | |
\Gamma(n-1) |
\mu=\sqrt{2/\pi}2n-2
\left(\sqrt{2\pi | |
(n/2-1) |
n/2-1+1/2e-(n/2-1) ⋅ [1+
1 | +O( | |
12(n/2-1) |
1 | |
n2 |
)]\right)2}{\sqrt{2\pi}(n-2)n-2+1/2e-(n-2) ⋅ [1+
1 | +O( | |
12(n-2) |
1 | |
n2 |
)]}
=(n-2)1/2 ⋅ \left[1+
1 | +O( | |
4n |
1 | |
n2 |
)\right]=\sqrt{n-1}(1-
1 | |
n-1 |
)1/2 ⋅ \left[1+
1 | +O( | |
4n |
1 | |
n2 |
)\right]
=\sqrt{n-1} ⋅ \left[1-
1 | +O( | |
2n |
1 | |
n2 |
)\right] ⋅ \left[1+
1 | +O( | |
4n |
1 | |
n2 |
)\right]
=\sqrt{n-1} ⋅ \left[1-
1 | +O( | |
4n |
1 | |
n2 |
)\right]
V=(n-1)-\mu2=(n-1) ⋅
1 | |
2n |
⋅ \left[1+O(
1 | |
n |
)\right]
X\sim\chik
X2\sim
2 | |
\chi | |
k |
\chi1\simHN(1)
X\simN(0,1)
|X|\sim\chi1
Y\simHN(\sigma)
\sigma>0
\tfrac{Y}{\sigma}\sim\chi1
\chi2\simRayleigh(1)
Y\simRayleigh(\sigma)
\sigma>0
\tfrac{Y}{\sigma}\sim\chi2
\chi3\simMaxwell(1)
Y\simMaxwell(a)
a>0
\tfrac{Y}{a}\sim\chi3
\|\boldsymbol{N}i=1,\ldots,k{(0,1)}\|2\sim\chik
k
k
\limk\tfrac{\chik-\muk}{\sigmak}\xrightarrow{d} N(0,1)
n-1
Name | Statistic | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\right)2 | ||||||||||||||
\right)2 | ||||||||||||||
chi distribution |
\right)2} | |||||||||||||
\right)2} |