Carob Explained

The carob (; Ceratonia siliqua) is a flowering evergreen tree or shrub in the Caesalpinioideae sub-family of the legume family, Fabaceae. It is widely cultivated for its edible fruit, which takes the form of seed pods, and as an ornamental tree in gardens and landscapes. The carob tree is native to the Mediterranean region and the Middle East.[1] Portugal is the largest producer of carob, followed by Italy and Morocco.

In the Mediterranean Basin, extended to the southern Atlantic coast of Portugal (i.e., the Algarve region) and the Atlantic northwestern Moroccan coast, carob pods were often used as animal feed and in times of famine, as "the last source of [human] food in hard times".[2] The ripe, dried, and sometimes toasted pod is often ground into carob powder, which was sometimes used as an substitute for cocoa powder, especially in the 1970s natural food movement.[3] The powder and chips can be used as a chocolate alternative in most recipes.

The plant's seeds are used to produce locust bean gum or carob gum, a common thickening agent used in food processing.

Description

The carob tree grows up to 15round=5NaNround=5 tall. The crown is broad and semispherical, supported by a thick trunk with rough brown bark and sturdy branches. Its leaves are 10to long, alternate, pinnate, and may or may not have a terminal leaflet. It is frost-tolerant to roughly -7°C.

Most carob trees are dioecious and some are hermaphroditic, so strictly male trees do not produce fruit.[4] When the trees blossom in autumn, the flowers are small and numerous, spirally arranged along the inflorescence axis in catkin-like racemes borne on spurs from old wood and even on the trunk (cauliflory); they are pollinated by both wind and insects. The male flowers smell like human semen, an odor that is caused in part by amines.

The fruit is a legume (also known commonly, but less accurately, as a pod), that is elongated, compressed, straight, or curved, and thickened at the sutures. The pods take a full year to develop and ripen. When the sweet, ripe pods eventually fall to the ground, they are eaten by various mammals, such as swine, thereby dispersing the hard inner seed in the excrement.

The seeds of the carob tree contain leucodelphinidin, a colourless flavanol precursor related to leucoanthocyanidins.[5]

Etymology

The word "carob" comes from Middle French French, Middle (ca.1400-1600);: carobe (modern French French: caroube), which borrowed it from Arabic Arabic: [[wikt:خروب|خَرُّوبٌ]] (kharrūb, "locust bean pod") and Persian khirnub,[6] which ultimately borrowed it perhaps from Akkadian language Akkadian: harūb- or Aramaic Official Aramaic (700-300 BCE);; Imperial Aramaic (700-300 BCE);: חרובא ḥarrūḇā. '

Ceratonia siliqua, the scientific name of the carob tree, derives from the Greek Greek, Ancient (to 1453);: κερατωνία keratōnia, "carob-tree" (cf. Greek, Ancient (to 1453);: κέρας kéras, "horn"),[7] and Latin siliqua "pod, carob".

In English, it is also known as "St. John's bread"[8] and "locust tree"[9] (not to be confused with African locust bean).[10] The latter designation also applies to several other trees from the same family.

In Yiddish, it is called Yiddish: באקסער bokser, derived from the Middle High German bokshornboum "ram's horn tree" (in reference to the shape of the carob).[11]

The carat, a unit of mass for gemstones, and a measurement of purity for gold, takes its name via the Arabic qīrāṭ from the Greek name for the carob seed Greek, Ancient (to 1453);: [[wikt:κεράτιον|κεράτιον]] (lit. "small horn").[12] [13]

Distribution and habitat

Although cultivated extensively, carob can still be found growing wild in eastern Mediterranean regions, and has become naturalized in the western Mediterranean.

The tree is typical in the southern Portuguese region of the Algarve, where the tree is called alfarrobeira, and the fruit alfarroba. It is also seen in southern and eastern Spain (Spanish; Castilian: algarrobo, algarroba, Catalan / Valencian / Balearic: garrofer, garrofera, garrover, garrovera), mainly in the regions of Andalusia, Murcia, Valencia, the Balearic Islands[14] and Catalonia[15] [16] [17] (Catalan / Valencian / Balearic: garrofer, garrofera, garrover, garrovera); Malta (Maltese: ħarruba), on the Italian islands of Sicily (Sicilian: carrua) and Sardinia (Italian: carrubo, carruba), in Southern Croatia (Croatian: rogač), such as on the island of Šipan, in eastern Bulgaria (Bulgarian: рожков), and in Southern Greece, Cyprus, as well as on many Greek islands such as Crete and Samos.

In Israel, the Hebrew name is

חרוב (translit. charuv). The common Greek name is Greek, Modern (1453-);: χαρουπιά (translit.), or Greek, Modern (1453-);: ξυλοκερατιά (translit., meaning "wooden horn"). In Turkey, it is known as "goat's horn" .[18]

The various trees known as algarrobo in Latin America (Samanea saman in Cuba, Prosopis pallida in Peru, and four species of Prosopis in Argentina and Paraguay) belong to a different subfamily of the Fabaceae: Mimosoideae. Early Spanish settlers named them algarrobo after the carob tree because they also produce pods with sweet pulp.[19]

Ecology

The carob genus, Ceratonia, belongs to the legume family, Fabaceae, and is believed to be an archaic remnant of a part of this family now generally considered extinct. It grows well in warm temperate and subtropical areas, and tolerates hot and humid coastal areas. As a xerophyte (drought-resistant species), carob is well adapted to the conditions of the Mediterranean region with just 250to of rainfall per year.

Carob trees can survive long periods of drought, but to grow fruit, they need 500to of rainfall per year. They prefer well-drained, sandy loams and are intolerant of waterlogging, but the deep root systems can adapt to a wide variety of soil conditions and are fairly salt-tolerant (up to 3% in soil).[20] After being irrigated with saline water in the summer, carob trees could possibly recover during winter rainfalls.[21] In some experiments, young carob trees were capable of basic physiological functions under high-salt conditions (40 mmol NaCl/L).[21]

Not all legume species can develop a symbiotic relationship with rhizobia to make use of atmospheric nitrogen. It remains unclear if carob trees have this ability: Some findings suggest that it is not able to form root nodules with rhizobia,[20] while in another more recent study, trees have been identified with nodules containing bacteria believed to be from the genus Rhizobium.[22] However, a study measuring the 15N-signal (isotopic signature) in the tissue of the carob tree did not support the theory that carob trees naturally use atmospheric nitrogen.[23]

Cultivation

The vegetative propagation of carob is naturally restricted due to its low adventitious rooting potential. Therefore, grafting and air-layering may prove to be more effective methods of asexual propagation.[24] Seeds are commonly used as the propagation medium. The sowing occurs in pot nurseries in early spring and the cooling- and drying-sensitive seedlings are then transplanted to the field in the next year after the last frost. Carob trees enter slowly into production phase. Where in areas with favorable growing conditions, the cropping starts 3–4 years after budding, with the nonbearing period requiring up to 8 years in regions with marginal soils. Full bearing of the trees occurs mostly at a tree-age of 20–25 years when the yield stabilizes. The orchards are traditionally planted in low densities of 25–45 trees per hectare (25to). Hermaphroditic or male trees, which produce fewer or no pods, respectively, are usually planted in lower densities in the orchards as pollenizers.

Intercropping with other tree species is widely spread. Not much cultivation management is required. Only light pruning and occasional tilling to reduce weeds is necessary. Nitrogen-fertilizing of the plants has been shown to have positive impacts on yield performance. Although it is native to moderately dry climates, two or three summers' irrigation greatly aid the development, hasten the fruiting, and increase the yield of a carob tree.[25]

Harvest and post-harvest treatment

The most labour-intensive part of carob cultivation is harvesting, which is often done by knocking the fruit down with a long stick and gathering them together with the help of laid-out nets. This is a delicate task because the trees are flowering at the same time and care has to be taken not to damage the flowers and the next year's crop. The literature recommends research to get the fruit to ripen more uniformly or also for cultivars which can be mechanically harvested (by shaking).

After harvest, carob pods have a moisture content of 10–20% and should be dried down to a moisture content of 8% so the pods do not rot. Further processing separates the kernels (seeds) from the pulp. This process is called kibbling and results in seeds and pieces of carob pods (kibbles). Processing of the pulp includes grinding for animal feed production or roasting and milling for human food industry. The seeds have to be peeled which happens with acid or through roasting. Then the endosperm and the embryo are separated for different uses.

Pests and diseases

Few pests are known to cause severe damage in carob orchards, so they have traditionally not been treated with pesticides. Some generalist pests such as the larvae of the leopard moth (Zeuzera pyrina L.), the dried fruit moth (Cadra calidella), small rodents such as rats (Rattus spp.) and gophers (Pitymys spp.) can cause damage occasionally in some regions. Only some cultivars are severely susceptible to mildew disease (Oidium ceratoniae C.). One pest directly associated with carob is the larva of the carob moth (Myelois ceratoniae Z.), which can cause extensive postharvest damage.[20]

Cadra calidella attack carob crops before harvest and infest products in stores. This moth, prevalent in Cyprus, will often infest the country's carob stores. Research has been conducted to understand the physiology of the moth, in order to gain insight on how to monitor moth reproduction and lower their survival rates, such as through temperature control, pheromone traps, or parasitoid traps.[26]

Production

In 2022, world production of carob (as locust beans) was estimated to be 56,423 tonnes, although not all countries known to grow carob reported their results to the UN Food and Agriculture Organization. Production amounts for Turkey and Morocco accounted for nearly all the world total reported in 2022.[27]

Cultivars and breeding aims

Most of the roughly 50 known cultivars[20] are of unknown origin and only regionally distributed. The cultivars show high genetic and therefore morphological and agronomical variation.[20] No conventional breeding by controlled crossing has been reported, but selection from orchards or wild populations has been done. Domesticated carobs (C. s. var. edulis) can be distinguished from their wild relatives (C. s. var. silvestris) by some fruit-yielding traits such as building of greater beans, more pulp, and higher sugar contents. Also, genetic adaptation of some varieties to the climatic requirements of their growing regions has occurred.[20] Though a partially successful breaking of the dioecy happened, the yield of hermaphrodite trees still cannot compete with that of female plants, as their pod-bearing properties are worse.[28] Future breeding would be focused on processing-quality aspects, as well as on properties for better mechanization of harvest or better-yielding hermaphroditic plants. The use of modern breeding techniques is restricted due to low polymorphism for molecular markers.[20]

Uses

Food

Carob products consumed by humans come from the dried, sometimes roasted, pod, which has two main parts: the pulp accounts for 90% and the seeds 10% by weight.[20] [29] Carob pulp is sold either as flour or "chunks". The flour of the carob embryo (seed) can also be used for human and animal nutrition, but the seed is often separated before making carob powder (see section on locust bean gum below).

Carob pods are mildly sweet on their own (being roughly one third to one half sugar by dry weight), so they are used in powdered, chip or syrup form as an ingredient in cakes and cookies, sometimes as a substitute for chocolate in recipes because of the color, texture, and taste of carob. In Malta, a traditional sweet called karamelli tal-harrub and eaten during the Christian holidays of Lent and Good Friday is made from carob pods.[30] Dried carob fruit is traditionally eaten on the Jewish holiday of Tu Bishvat.[31]

Carob powder

Carob powder (carob pulp flour[32]) is made of roasted, then finely ground, carob pod pulp.[33] [34] [35] [36]

Locust bean gum

Locust bean gum is produced from the endosperm, which accounts for 42–46% of the carob seed, and is rich in galactomannans (88% of endosperm dry mass). Galactomannans are hydrophilic and swell in water. If galactomannans are mixed with other gelling substances, such as carrageenan, they can be used to effectively thicken the liquid part of food. This is used extensively in canned food for animals in order to get the "jellied" texture.

Animal feed

While chocolate contains the chemical compound theobromine in levels that are toxic to some mammals, carob contains none, and it also has no caffeine, so it is sometimes used to make chocolate-like treats for dogs.[37] [38] [39] Carob pod meal is also used as an energy-rich feed for livestock, particularly for ruminants, though its high tannin content may limit this use.[40]

Historically, carob pods were mainly used for animal fodder in the Maltese islands, apart from times of famine or war, when they formed part of the diet of many Maltese people. On the Iberian Peninsula, carob pods were historically fed to donkeys.

Composition

The pulp of a carob pod is about 48–56% sugars and 18% cellulose and hemicellulose. Some differences in sugar (sucrose) content are seen between wild and cultivated carob trees: ~531 g/kg dry weight in cultivated varieties and ~437 g/kg in wild varieties. Fructose and glucose levels do not differ between cultivated and wild carob.[41] The embryo (20-25% of seed weight) is rich in proteins (50%). The testa, or seed coat (30–33% of seed weight), contains cellulose, lignins, and tannins.[42]

Syrup and drinks

Carob pods are about 1/3 to 1/2 sugar by weight, and this sugar can be extracted into a syrup.[43] In Malta, a carob syrup (ġulepp tal-ħarrub) is made out of the pods. Carob syrup is also used in Crete,[44] and Cyprus exports it.[45]

In Palestine, crushed pods are heated to caramelize their sugar, then water is added and boiled for some time. The result is a cold beverage, also called kharrub,[46] [47] which is sold by juice shops and street vendors, especially in summer. This drink is popular during Ramadan in Gaza. [48]

In Lebanon the molasses is called debs el kharrub (literally: molasses of the carob), but people generally shorten it to debs. The molasses has a sweet, chocolate-like flavor. It is commonly mixed with tahini (typically 75% kharrub molasses and 25% tahini). The resulting mixture is called debs bi tahini and is eaten raw or with bread. The molasses is also used in certain cakes.[49] The region of Iqlim al-Kharrub, which translates to the region of the carob, produces a significant amount of carob.

In Cyprus, the dried and milled carob pods are left to soak in water, before being transferred into special containers out of which the carob juice gradually seeps out of and is collected. The juice is then boiled with constant stirring yielding a thick syrup known as haroupomelo.[50] [51] Although this syrup is frequently sold and eaten as is, haroupomelo is also used as a base for a local toffee-like sweet snack known as pasteli.[52] Constant stirring of the carob syrup causes it to form into a black, amorphous mass which is then left to cool. The mass is then kneaded, stretched and pulled until the fair, golden color and toffee-like texture of pasteli is obtained.

Carob is used for compote, liqueur, and syrup in Turkey, Malta, Portugal, Spain, and Sicily. In Libya, carob syrup (called rub) is used as a complement to asida (made from wheat flour). The so-called "carob syrup" made in Peru is actually from the fruit of the Prosopis nigra tree. Because of its strong taste, carob syrup is sometimes flavored with orange or chocolate. In Yemen, carob tree is playing a role in controlling diabetes mellitus according to Yemeni folk medicine, and diabetics consume carob pods as a juice to lower their blood sugar levels.[53]

Ornamental

The carob tree is widely cultivated in the horticultural nursery industry as an ornamental plant for Mediterranean climates and other temperate regions around the world, being especially popular in California and Hawaii. The plant develops a sculpted trunk and the form of an ornamental tree after being "limbed up" as it matures, otherwise it is used as a dense and large screening hedge. The plant is very drought tolerant as long as one does not care about the size of the fruit harvest, so can be used in xeriscape landscape design for gardens, parks, and public municipal and commercial landscapes.

Timber

In some areas of Greece, viz. Crete, carob wood is often used as a firewood. As it makes such excellent fuel, it is sometimes even preferred over oak or olive wood.

Because the much fluted stem usually shows heart rot, carob wood is rarely used for construction timber. However, it is sometimes sought for ornamental work--particularly for furniture design, as the natural shape of the trunk is well-suited to the task. Additionally, the extremely wavy grain of the wood gives carob wood exceptional resistance to splitting; thus, sections of Carob bole are suitable for chopping blocks for splitting wood.

See also

External links

Notes and References

  1. Web site: Tropicos - Name - !Ceratonia siliqua L.. tropicos.org. 2011-05-12. 2017-08-02. https://web.archive.org/web/20170802095941/http://www.tropicos.org/Name/13028551. live.
  2. "Carob Pod", Mathew Attokaran, Natural Food Flavors and Colorants, 2017,, p. 112
  3. Kauffman . Jonathan . 2018-01-31 . How Carob Traumatized a Generation . en-US . The New Yorker . 2023-10-07 . 0028-792X.
  4. Web site: Sweet Crop Broadcast . 14 April 2013 . Landline . Prue . Adams . vanc .
  5. Web site: Erik . Gotfredsen . vanc . Leucodelphinidin . Liber Herbarum Minor (English): The incomplete reference-guide to Herbal medicine . 2017-07-31 . 2017-07-31 . https://web.archive.org/web/20170731230047/http://www.liberherbarum.net/Minor/UK/IN1764.htm . live .
  6. Oxford English Dictionary, 1st ed. (1888), s.v. 'carob'
  7. , .
  8. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=26531 ITIS Report Page: Ceratonia siliqua
  9. Book: The cultivated plants of the tropics and subtropics : cultivation, economic value, utilization . Rehm S, Espig G . 1991 . Margraf . Weikersheim (DE) . viii, 552 p. – p.220.
  10. Book: Conder . Claude Reignier . The Survey of Western Palestine: Memoirs of the Topography, Orography, Hydrography, and Archaeology . Kitchener . Herbert H. . . 1883 . 3 . London . Claude Reignier Conder . Herbert Kitchener, 1st Earl Kitchener . vanc., p. 354 s.v. Khurbet Jala
  11. Web site: A Brief on Bokser . Forward . 4 February 2005 . 22 December 2022 . 22 December 2022 . https://web.archive.org/web/20221222171403/https://forward.com/news/2887/a-brief-on-bokser/?amp=1 . live .
  12. Book: The Oxford English Dictionary . Pearsall J . 2011 . Oxford University Press . 978-0-19-960108-0 . 12th . New York . 211 . keration . https://books.google.com/books?id=4XycAQAAQBAJ&q=keration&pg=PA211 . 2022-06-21 . 2023-09-28 . https://web.archive.org/web/20230928231029/https://books.google.com/books?id=4XycAQAAQBAJ&q=keration&pg=PA211#v=snippet&q=keration&f=false . live .
  13. .
  14. Web site: 2022-03-16 . Agricultura planta 11 varietats de garrovers per a la reproducció de material vegetal a la finca de Sa Granja . 2023-10-13 . Conselleria d'Agricultura, Pesca i Medi Natural, Govern de les Illes Balears . ca .
  15. Web site: Mumbrú . Jordi . 2022-09-02 . La febre dels garrofers . 2023-10-13 . Ara.cat . ca.
  16. Web site: El garrofer . 2023-10-13 . Departament d'Acció Climàtica, Alimentació i Agenda Rural, GenCat . ca.
  17. Web site: Pedrero . Paula . 2022-09-19 . El boom de la garrofa també arriba les Terres de l'Ebre . 2023-10-13 . Setmanari l'Ebre . ca.
  18. Web site: Fruits . Turkish Cuisine . 2010-07-26 . dead . https://web.archive.org/web/20110728134522/http://www.turkish-cuisine.org/english/pages.php?ParentID=6&FirstLevel=95 . 2011-07-28 .
  19. Web site: Valentin Calderon. Lionel. Barrio Algarrobos. Aquí Esta Puerto Rico. es. 2019-03-07. 2019-03-08. https://web.archive.org/web/20190308002927/https://aquiestapuertorico.com/barrio-algarrobos/. live.
  20. Book: Carob tree. Battle I, Tous J. International Plant Genetic Resources Institute. 1997. 978-92-9043-328-6. Rome, Italy. 2011-02-19. 2023-06-18. https://web.archive.org/web/20230618205726/https://cgspace.cgiar.org/handle/10568/104277. live.
  21. Correia PJ, Gamaa F, Pestana M, Martins-Loução MA . Tolerance of young (Ceratonia siliqua L.) carob rootstock to NaCl. Agricultural Water Management. 2010. 97. 6. 910–916. 10.1016/j.agwat.2010.01.022.
  22. Missbah El Idrissi M, Aujjar N, Belabed A, Dessaux Y, Filali-Maltouf A . Characterization of rhizobia isolated from Carob tree (Ceratonia siliqua) . Journal of Applied Microbiology . 80 . 2 . 165–73 . 1996 . 10.1111/j.1365-2672.1996.tb03205.x .
  23. La Malfa S, Tribulato E, Gentile A, Gioacchini P, Ventura M, Tagliavini M . 15N natural abundance technique does not reveal the presence of nitrogen from biological fixation in field grown carob (Ceratonia siliqua L.) trees. Acta Horticulturae. 2010. 868. 191–195.
  24. Gubbuk. Hamide. Gunes. Esma. Ayala-Silva. Tomas. Ercisli. Sezai . vanc . Rapid Vegetative Propagation Method for Carob. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2011. 39 . 1 . 251–254. 10.15835/nbha3916074. free.
  25. Book: Bailey, Liberty Hyde . vanc . The Standard Cyclopedia of Horticulture . 718. The Macmillan Company . 1914. 23 November 2011.
  26. Cox PD . 1975 . The influence of photoperiod on the life-cycles of Ephestia calidella (Guenee) and Ephestia figulilella Gregson (Lepidoptera: Phycitidae). . Journal of Stored Products Research . 11 . 2 . 77–85 . 10.1016/0022-474X(75)90043-0 .
  27. Web site: Carob production in 2022, Crops/Regions/World list/Production Quantity/Year (pick lists). 2024. UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 3 July 2024.
  28. Zohary. Daniel . vanc . Domestication of the carob (Ceratonia siliqua L.) . Israel Journal of Plant Sciences . 2013 . 50 . supplement 1 . 141–145 . 10.1560/BW6B-4M9P-U2UA-C6NN .
  29. Book: Droste, Rainer . vanc . Möglichkeiten und Grenzen des Anbaus von Johannisbrot (Ceratonia siliqua L.) als Bestandteil eines traditionellen Anbausystems in Algarve, Portugal . Possibilities and limitations of the cultivation of locust bean (Ceratonia siliqua L.) as part of a traditional farming system in Algarve, Portugal . de . Goltze . Institut für Pflanzenbau und Tierhygiene in den Tropen und Subtropen, Georg-August-Universität Göttingen . 1993 . 978-3-88452-743-6 .
  30. Web site: Lenten treat: Carob caramel sweets . 2 April 2007 . Times of Malta . Natalino . Fenech . vanc . 18 November 2019 . 2 December 2019 . https://web.archive.org/web/20191202153220/https://timesofmalta.com/articles/view/lenten-treat-carob-caramel-sweets.21439 . live .
  31. Web site: Soloveichik. Meir. vanc. Why Jews Used to Eat Dried Carob on Tu b'Shvat. Mosaic. 25 July 2017. 20 June 2018. https://web.archive.org/web/20180620102340/https://mosaicmagazine.com/observation/2015/02/why-jews-used-to-eat-dried-carob-on-tu-bshvat/. live.
  32. Martić . Nikola . Zahorec . Jana . Stilinović . Nebojša . Andrejić-Višnjić . Bojana . Pavlić . Branimir . Kladar . Nebojša . Šoronja-Simović . Dragana . Šereš . Zita . Vujčić . Miodrag . Horvat . Olga . Rašković . Aleksandar . Hepatoprotective Effect of Carob Pulp Flour (Ceratonia siliqua L.) Extract Obtained by Optimized Microwave-Assisted Extraction . Pharmaceutics . 17 March 2022 . 14 . 3 . 657 . 10.3390/pharmaceutics14030657 . 35336031 . 8950939 . free .
  33. Higazy . Magda . ELDiffrawy . Entsar . Zeitoun . Mohamed . Shaltout . Omima . Abou El-Yazeed . Ayman . Nutrients of Carob and Seed Powders and Its Application in Some Food Products . Journal of the Advances in Agricultural Researches . 31 March 2018 . 23 . 1 . 130–147 . 1110-5585 . 18 October 2022 . 18 October 2022 . https://web.archive.org/web/20221018071207/https://jalexu.journals.ekb.eg/article_162173.html . live .
  34. Web site: F Gutkind & Co Ltd . Carob Powder . Ingredients Network . 2022-10-18 . 2022-10-18 . https://web.archive.org/web/20221018071205/https://www.ingredientsnetwork.com/carob-powder-prod1271362.html . live .
  35. Rodríguez-Solana . Raquel . Romano . Anabela . Moreno-Rojas . José Manuel . Carob Pulp: A Nutritional and Functional By-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review . Processes . 30 June 2021 . 9 . 7 . 1146 . 10.3390/pr9071146 . free . 10400.1/16836 . free .
  36. Issaoui . Manel . Flamini . Guido . Delgado . Amélia . Sustainability Opportunities for Mediterranean Food Products through New Formulations Based on Carob Flour (Ceratonia siliqua L.) . Sustainability . January 2021 . 13 . 14 . 8026 . 10.3390/su13148026 . en . 2071-1050. free . 10400.1/16834 . free .
  37. Craig WJ, Nguyen TT . 1984 . Caffeine and theobromine levels in cocoa and carob products . . 49 . 1 . 302–303, 305 . 10.1111/j.1365-2621.1984.tb13737.x .
  38. Book: Burg, Barbara . vanc . Good Treats For Dogs Cookbook for Dogs: 50 Home-Cooked Treats for Special Occasions . Quarry Books . 2007 . 28.
  39. Book: Puotinen CJ . The Encyclopedia of Natural Pet Care . McGraw Hill Professional . 2000 . 81 .
  40. Web site: Heuzé V, Sauvant D, Tran G, Lebas F, Lessire M . Carob (Ceratonia siliqua) . . October 3, 2013 . October 3, 2013 . October 12, 2013 . https://web.archive.org/web/20131012143125/http://www.feedipedia.org/node/320 . live .
  41. Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M . Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey . Food Chemistry . January 2007 . 100 . 4 . 1453–1455 . 10.1016/j.foodchem.2005.11.037.
  42. Calixto . Fulgancio S . Components of Nutritional Interest in Carob Pods (Ceratonia siliqua) . J. Sci. Food Agric. . 5 May 1982 . 33 . 12 . 1319–1423 . 10.1002/jsfa.2740331219 .
  43. 10.1016/j.arabjc.2011.10.012. 1878-5352. 9. –955–S959. El Batal. H.. Hasib. A.. Ouatmane. A.. Dehbi. F.. Jaouad. A.. Boulli. A.. Sugar composition and yield of syrup production from the pulp of Moroccan carob pods (Ceratonia siliqua L.). Arabian Journal of Chemistry. 2016-11-01. free.
  44. Web site: The carob tree – Crete's unique and useful product . Dubrovskiy . V. . The New Crete . 25 November 2019 . live . https://web.archive.org/web/20210726021316/https://thenewgreece.com/en/kitchen/the-carob-tree-cretes-unique-and-useful-product/ . 2021-07-26 . 2022-09-23 .
  45. Web site: Carob Syrup . Visit Cyprus . live . https://web.archive.org/web/20220923221450/https://www.visitcyprus.com/index.php/en/discovercyprus/gastronomy/local-produce/331-carob-syrup . 2022-09-23 . 2022-09-23 .
  46. Web site: Carob Juice Sharab Alkharroub . Shutterstock . 18 October 2022 . en . 28 September 2023 . https://web.archive.org/web/20230928231019/https://www.shutterstock.com/image-photo/carob-juice-sharab-alkharroub-ramadan-drinks-1391820542 . live .
  47. Web site: El-Haddad . Laila . Schmitt . Maggie . Carob Juice . The Gaza Kitchen: A Palestinian Culinary Journey . 18 October 2022 . en . 18 October 2022 . https://web.archive.org/web/20221018075114/https://app.ckbk.com/recipe/gaza70968c11s001ss004r005/carob-juice . live .
  48. Web site: Palestinian Cuisine . . 18 October 2022 . en . 18 October 2022 . https://web.archive.org/web/20221018075108/https://imeu.org/article/palestinian-cuisine . live .
  49. Web site: Tahini and Carob molasses . Taste of Beirut . 31 August 2009 . 11 November 2022 . en . 24 November 2022 . https://web.archive.org/web/20221124011039/https://www.tasteofbeirut.com/tahini-and-carob-molasses/ . live .
  50. Web site: Christos . Carob Syrup . 2023-04-12 . www.visitcyprus.com . en-GB . 2022-09-27 . https://web.archive.org/web/20220927224914/https://www.visitcyprus.com/index.php/en/discovercyprus/gastronomy/local-produce/331-carob-syrup . live .
  51. Web site: Gastronomy in Cyprus . 2023-04-12 . publications.gov.cy . en . 2023-04-12 . https://web.archive.org/web/20230412150203/https://publications.gov.cy/en/publications/2020/01/03/gastronomy-in-cyprus/ . live .
  52. Web site: Christos . Pastelli (Carob Toffee) . 2023-04-12 . www.visitcyprus.com . en-GB . 2023-04-12 . https://web.archive.org/web/20230412150159/https://www.visitcyprus.com/index.php/en/discovercyprus/gastronomy/local-produce/337-pastelli-carob-toffee . live .
  53. Qasem. Mousa A.. Noordin. Mohamed Ibrahim. Arya. Aditya. Alsalahi. Abdulsamad. Jayash. Soher Nagi. 2018-05-23. Evaluation of the glycemic effect of Ceratonia siliqua pods (Carob) on a streptozotocin-nicotinamide induced diabetic rat model. PeerJ. en. 6. e4788. 10.7717/peerj.4788. 29844959. 2167-8359. 5970558 . free .