Organoberyllium chemistry explained
Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains less developed relative to the chemistry of other main-group elements, because Be compounds are toxic and few applications have been found.
Structure
Homoleptic compounds
The coordination number of Be in organoberyllium compounds ranges from two to four.
Dimethylberyllium and dimethylmagnesium adopts the same structure.[1] Diethylberyllium, however, does not structurally resemble diethylmagnesium (which has the same structure as dimethylmagnesium).[2] This contrast is attributed to the small size of Be relative to its heavier congener Mg: Be is one of the smallest atoms on the periodic table. Dineopentylberyllium and many other dialkyl derivatives has been reported.
The phenyl derivative is represented by trimeric Be3Ph6.[3] A terphenyl derivative is known.[4] With bulky aryl ligands three-coordination is observed, see .[5]
Organoberyllium compounds are typically prepared by transmetallation or alkylation of beryllium chloride.[6]
Beryllocene
Beryllocene features both pi- and sigma-bonded cyclopentadienyl ligands.[7] [8] [9] It is prepared from and potassium cyclopentadienide:
Mixed ligand compounds
Many mixed ligand complexes are simply formed by addition of Lewis bases to diaryl and dialkylberyllium compounds. Many derivatives are known of the type are known where L = thioether, pyridine, NHC,[10] and 1,4-Diazabutadienes.[11] Beryllium forms a variety of complexes with N-hetereocyclic carbenes (NHCs).[12] [13] [14] Beryllium complexes of cyclic alkyl amino carbene (CAAC) ligands have the formula). A CAAC ligand coordinates a 2 electron -1 charge into the beryllium center.[15] CAAC has an "amino" substituent and an "alkyl" sp3 carbon atom. CAACs are very good σ donors (higher HOMO) and π acceptors (lower LUMO) compared to NHCs. In addition, the lower heteroatom stability of the carbene center in CAAC compared to NHC results in a lower ΔE.
Low oxidation beryllium chemistry
While Be(II) is one of the common oxidation state for Be, compounds containing Be(I) and Be(0) have been described..[16]
One example of a Be(I) was a CAAC ligand has been reported in the form of a radical cation.[17] The reduction of Be(II) to Be(I) involved the use of TEMPO ((2,2,6,6-Tetramethylpiperidin-1-yl) oxyl).
History
Dimethylberyllium was reported in 1876. A. Atterberg produced this first organoBe compound by treatment of dimethylmercury with elemental beryllium.[18] The alkylation of beryllium halides was studied by H. Gilman.[19] Early systematic work was conducted by G. E. Coates.
See also
Notes and References
- Snow . A. I. . Rundle . R. E. . 1951-07-02 . The structure of dimethylberyllium . Acta Crystallographica . en . 4 . 4 . 348–352 . 10.1107/S0365110X51001100 . 1951AcCry...4..348S . 2027/mdp.39015095081207 . 0365-110X. free.
- 10.1016/S0022-328X(00)84373-9 . Die kristallstruktur des diäthylmagnesiums . 1965 . Weiss . E. . Journal of Organometallic Chemistry . 4 . 2 . 101–108 .
- Müller . Matthias . Buchner . Magnus R. . 2020-08-06 . Diphenylberyllium Reinvestigated: Structure, Properties, and Reactivity of BePh2, [(12-crown-4)BePh]+, and [BePh<sub>3</sub>]− . Chemistry: A European Journal . 26 . 44 . 9915–9922 . 10.1002/chem.202000259 . 0947-6539 . 7496417 . 31957173.
- Paparo . Albert . Jones . Cameron . 2019-02-01 . Beryllium Halide Complexes Incorporating Neutral or Anionic Ligands: Potential Precursors for Beryllium Chemistry . Chemistry: An Asian Journal . en . 14 . 3 . 486–490 . 10.1002/asia.201801800 . 30604490 . 58632466 . 1861-4728.
- Ruhlandt-Senge . Karin . Bartlett . Ruth A. . Olmstead . Marilyn M. . Power . Philip P. . 1993-04-01 . Synthesis and structural characterization of the beryllium compounds [Be(2,4,6-Me3C6H2)2(OEt2)], [Be{O(2,4,6-tert-Bu3C6H2)}2(OEt2)], and [Be{S(2,4,6-tert-Bu3C6H2)}2(THF)].cntdot.PhMe and determination of the structure of [BeCl2(OEt2)2] ]. Inorganic Chemistry . en . 32 . 9 . 1724–1728 . 10.1021/ic00061a031 . 0020-1669.
- Naglav . Dominik . Buchner . Magnus R. . Bendt . Georg . Kraus . Florian . Schulz . Stephan . 2016-08-26 . Off the Beaten Track-A Hitchhiker's Guide to Beryllium Chemistry . Angewandte Chemie International Edition . en . 55 . 36 . 10562–10576 . 10.1002/anie.201601809 . 27364901.
- Fischer . Ernst Otto . Hofmann . Hermann P. . 1959-02-01 . Über Aromatenkomplexe von Metallen, XXV. Di‐cyclopentadienyl‐beryllium . Chemische Berichte . en . 92 . 2 . 482–486 . 10.1002/cber.19590920233 . 0009-2940.
- Almenningen . Arne . Haaland . Arne . Lusztyk . Janusz . 1979-05-08 . The molecular structure of beryllocene, (C5H5)2Be. A reinvestigation by gas phase electron diffraction . Journal of Organometallic Chemistry . en . 170 . 3 . 271–284 . 10.1016/S0022-328X(00)92065-5 . 0022-328X.
- Wong . C.-H. . Lee . T..-Y. . Chao . K.-J. . Lee . S. . 1972-06-15 . Crystal structure of bis(cyclopentadienyl)beryllium at –120°C . Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry . en . 28 . 6 . 1662–1665 . 10.1107/S0567740872004820 . 0567-7408.
- 10.1021/acs.organomet.1c00524 . Behavior of Lewis Bases toward Diphenylberyllium . 2021 . Thomas-Hargreaves . Lewis R. . Müller . Matthias . Spang . Nils . Ivlev . Sergei I. . Buchner . Magnus R. . Organometallics . 40 . 22 . 3797–3807 .
- Paparo . Albert . Best . Stephen P. . Yuvaraj . K. . Jones . Cameron . 2020-12-14 . Neutral, Anionic, and Paramagnetic 1,3,2-Diazaberyllacyles Derived from Reduced 1,4-Diazabutadienes . Organometallics . en . 39 . 23 . 4208–4213 . 10.1021/acs.organomet.0c00017 . 213828903 . 0276-7333.
- Gilliard . Robert J. . Abraham . Mariham Y. . Wang . Yuzhong . Wei . Pingrong . Xie . Yaoming . Quillian . Brandon . Schaefer . Henry F. . Schleyer . Paul v. R. . Robinson . Gregory H. . 2012-06-20 . Carbene-Stabilized Beryllium Borohydride . Journal of the American Chemical Society . en . 134 . 24 . 9953–9955 . 10.1021/ja304514f . 22670857 . 0002-7863.
- Paparo . Albert . Jones . Cameron . 2019-01-03 . Beryllium Halide Complexes Incorporating Neutral or Anionic Ligands: Potential Precursors for Beryllium Chemistry . Chemistry: An Asian Journal . en . 14 . 3 . 486–490 . 10.1002/asia.201801800 . 30604490 . 58632466 . 1861-4728.
- Buchner . Magnus R. . Müller . Matthias . Rudel . Stefan S. . 2017-01-19 . Beryllium Phosphine Complexes: Synthesis, Properties, and Reactivity of (PMe 3) 2 BeCl 2 and (Ph 2 PC 3 H 6 PPh 2)BeCl 2 . Angewandte Chemie International Edition . en . 56 . 4 . 1130–1134 . 10.1002/anie.201610956. 28004465.
- Schuster . Julia K. . Roy . Dipak Kumar . Lenczyk . Carsten . Mies . Jan . Braunschweig . Holger . 2019-02-18 . New Outcomes of Beryllium Chemistry: Lewis Base Adducts for Salt Elimination Reactions . Inorganic Chemistry . en . 58 . 4 . 2652–2658 . 10.1021/acs.inorgchem.8b03263 . 30707568 . 73424673 . 0020-1669.
- Arrowsmith . Merle . Braunschweig . Holger . Celik . Mehmet Ali . Dellermann . Theresa . Dewhurst . Rian D. . Ewing . William C. . Hammond . Kai . Kramer . Thomas . Krummenacher . Ivo . Mies . Jan . Radacki . Krzysztof . Schuster . Julia K. . 2016-06-06 . Neutral zero-valent s-block complexes with strong multiple bonding . Nature Chemistry . en . 8 . 9 . 890–894 . 10.1038/nchem.2542 . 27334631 . 2016NatCh...8..890A . 1755-4349.
- Wang . Guocang . Walley . Jacob E. . Dickie . Diane A. . Pan . Sudip . Frenking . Gernot . Gilliard . Robert J. . 2020-03-11 . A Stable, Crystalline Beryllium Radical Cation . Journal of the American Chemical Society . en . 142 . 10 . 4560–4564 . 10.1021/jacs.9b13777 . 32088963 . 211262005 . 0002-7863.
- 10.1002/cber.187600901256 . C. W. Blomstrand, aus Lund, 31. Mai 1876 . Berichte der Deutschen Chemischen Gesellschaft . 1876 . 9 . 853–862 .
- Gilman . Henry . Schulze . F. . 1927-11-01 . Organoberyllium halides . Journal of the American Chemical Society . en . 49 . 11 . 2904–2908 . 10.1021/ja01410a043 . 0002-7863.