Bundle of principal parts explained
In algebraic geometry, given a line bundle L on a smooth variety X, the bundle of n-th order principal parts of L is a vector bundle of rank
that, roughly, parametrizes
n-th order Taylor expansions of sections of
L.
and
the restrictions of projections
to
. Then the bundle of
n-th order principal parts is
Then
and there is a natural
exact sequence of vector bundles
0\to
⊗ L\toPn(L)\toPn-1(L)\to0.
where
is the sheaf of differential one-forms on
X.
See also
References
- Appendix II of Exp II of Book: Berthelot . Pierre . Pierre Berthelot (mathematician) . . . Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225) . 1971 . . Berlin; New York . fr . xii+700 . true . 10.1007/BFb0066283 . 978-3-540-05647-8 . 0354655 . .