Brake-specific fuel consumption explained

Brake-specific fuel consumption (BSFC) is a measure of the fuel efficiency of any prime mover that burns fuel and produces rotational, or shaft power. It is typically used for comparing the efficiency of internal combustion engines with a shaft output.

It is the rate of fuel consumption divided by the power produced. In traditional units, it measures fuel consumption in pounds per hour divided by the brake horsepower, lb/(hp⋅h); in SI units, this corresponds to the inverse of the units of specific energy, kg/J = s2/m2.

It may also be thought of as power-specific fuel consumption, for this reason. BSFC allows the fuel efficiency of different engines to be directly compared.

The term "brake" here as in "brake horsepower" refers to a historical method of measuring torque (see Prony brake).

Calculation

The brake-specific fuel consumption is given by,

BSFC=

r
P

where:

r

is the fuel consumption rate in grams per second (g/s)

P

is the power produced in watts where

P=\tau\omega

(W)

\omega

is the engine speed in radians per second (rad/s)

\tau

is the engine torque in newton metres (N⋅m)

The above values of r,

\omega

, and

\tau

may be readily measured by instrumentation with an engine mounted in a test stand and a load applied to the running engine. The resulting units of BSFC are grams per joule (g/J)

Commonly BSFC is expressed in units of grams per kilowatt-hour (g/(kW⋅h)). The conversion factor is as follows:

BSFC [g/(kW⋅h)] = BSFC [g/J] × (3.6 × 106)

The conversion between metric and imperial units is:

BSFC [g/(kW⋅h)] = BSFC [lb/(hp⋅h)] × 608.277

BSFC [lb/(hp⋅h)] = BSFC [g/(kW⋅h)] × 0.001644

Relation to efficiency

To calculate the actual efficiency of an engine requires the energy density of the fuel being used.

Different fuels have different energy densities defined by the fuel's heating value. The lower heating value (LHV) is used for internal-combustion-engine-efficiency calculations because the heat at temperatures below 150°C cannot be put to use.

Some examples of lower heating values for vehicle fuels are:

Certification gasoline = 18,640 BTU/lb (0.01204 kW⋅h/g)

Regular gasoline = 18,917 BTU/lb (0.0122222 kW⋅h/g)

Diesel fuel = 18,500 BTU/lb (0.0119531 kW⋅h/g)

Thus a diesel engine's efficiency = 1/(BSFC × 0.0119531) and a gasoline engine's efficiency = 1/(BSFC × 0.0122225)

Operating values and as a cycle average statistic

See main article: article and Consumption map. Any engine will have different BSFC values at different speeds and loads. For example, a reciprocating engine achieves maximum efficiency when the intake air is unthrottled and the engine is running near its peak torque. The efficiency often reported for a particular engine, however, is not its maximum efficiency but a fuel economy cycle statistical average. For example, the cycle average value of BSFC for a gasoline engine is 322 g/(kW⋅h), translating to an efficiency of 25% (1/(322 × 0.0122225) = 0.2540). Actual efficiency can be lower or higher than the engine’s average due to varying operating conditions. In the case of a production gasoline engine, the most efficient BSFC is approximately 225 g/(kW⋅h), which is equivalent to a thermodynamic efficiency of 36%.

An iso-BSFC map (fuel island plot) of a diesel engine is shown. The sweet spot at 206 BSFC has 40.6% efficiency. The x-axis is rpm; y-axis is BMEP in bar (bmep is proportional to torque)

Engine design and class

BSFC numbers change a lot for different engine designs, and compression ratio and power rating. Engines of different classes like diesels and gasoline engines will have very different BSFC numbers, ranging from less than 200 g/(kW⋅h) (diesel at low speed and high torque) to more than 1,000 g/(kW⋅h) (turboprop at low power level).

Examples for shaft engines

The following table takes values as an example for the specific fuel consumption of several types of engines. For specific engines values can and often do differ from the table values shown below. Energy efficiency is based on a lower heating value of 42.7 MJ/kg (g/(kW⋅h)) for diesel fuel and jet fuel, 43.9 MJ/kg (g/(kW⋅h)) for gasoline.

! kW !! HP ! Year! Engine! Type! Application! lb/(hp⋅h)! g/(kW⋅h)! Efficiency
48disp=tableNaNdisp=table1989Rotax 582gasoline, 2-strokeAviation, Ultralight, Eurofly Fire Fox425g/kW.h[1] %
431hp1987PW206B/B2turboshaftHelicopter, EC1350.553disp=tableNaNdisp=table[2] %
572hp1987turboshaftHelicopter, Bell 4270.537disp=tableNaNdisp=table%
670hp1981Arrius 2B1/2B1A-1 turboshaftHelicopter, EC1350.526disp=tableNaNdisp=table%
17.8PS1897Motor 250/400[3] Diesel, four-strokeStationary industrial Diesel engine324g/kW.h%
1100hp1960PT6C-67C turboshaftHelicopter, AW1390.49disp=tableNaNdisp=table%
515disp=tableNaNdisp=table1991Mazda R26B[4] Wankel, four-rotorRace car, Mazda 787B286g/kW.h%
1285hp1989turboshaftHelicopter, Tiger0.46disp=tableNaNdisp=table%
84.5disp=tableNaNdisp=table1996gasoline, turbo Aviation, Light-sport aircraft, WT9 Dynamic276g/kW.h[5] %
118hp1942gasoline Aviation, General aviation, Cessna 152 NaNlb/hp.h%
456disp=tableNaNdisp=table1988Honda RA168Egasoline, turboRace car, McLaren MP4/4272g/kW.h31.6%
1973GE T700turboshaftHelicopter, AH-1/UH-60/AH-64[6] %
1995PW150turbopropAirliner, Dash 8-400%
2412hp1984RTM322-01/9turboshaftHelicopter, NH900.42disp=tableNaNdisp=table%
63disp=tableNaNdisp=table1991GM Saturn I4 enginegasoline250g/kW.h[7] %
150disp=tableNaNdisp=table2011Ford EcoBoostgasoline, turbo Cars, Ford245g/kW.h[8] %
400hp1961Lycoming IO-720gasoline Aviation, General aviation, PAC Fletcher NaNlb/hp.h%
1989GE T408turboshaftHelicopter, CH-53K%
7000disp=tableNaNdisp=table1986Rolls-Royce MT7gas turbineHovercraft, SSC243.2g/kW.h[9] %
2000disp=tableNaNdisp=table1945Wright R-3350 Duplex-Cyclonegasoline, turbo-compoundAviation, Commercial aviation; B-29, Constellation, DC-70.38lb/hp.h[10] %
57disp=tableNaNdisp=table2003Toyota 1NZ-FXEgasolineCar, Toyota Prius225g/kW.h[11] %
134disp=tableNaNdisp=table2013Lycoming DEL-120Diesel four-strokeMQ-1C Gray Eagle[12] 0.36lb/hp.h%
8251disp=tableNaNdisp=table2005Europrop TP400turbopropAirbus A400M0.35lb/hp.h[13] %
550disp=tableNaNdisp=table1931Junkers Jumo 204diesel two-stroke, turboAviation, Commercial aviation, Junkers Ju 86NaN155[14] %
36000disp=tableNaNdisp=table2002turboshaftMarine propulsion207g/kW.h[15] %
2340disp=tableNaNdisp=table1949Diesel-compound0.34lb/hp.h[16] %
165disp=tableNaNdisp=table2000Volkswagen 3.3 V8 TDIDieselCar, Audi A8205g/kW.h[17] %
2013disp=tableNaNdisp=table1940Deutz DZ 710Diesel two-strokeConcept Aircraft engine0.33lb/hp.h[18] %
42428disp=tableNaNdisp=table1993GE LM6000turboshaftMarine propulsion, Electricity generation200.1g/kW.h[19] %
130disp=tableNaNdisp=table2007BMW N47 2L DieselCars, BMW198g/kW.h[20] %
88disp=tableNaNdisp=table1990Audi 2.5L TDIDieselCar, Audi 100198g/kW.h[21] %
66disp=tableNaNdisp=table1992VAG 1.9TDI 66kwDiesel 4-strokeCar, Audi 80, VW Golf/Passat197g/kW.h[22] %
368disp=tableNaNdisp=table2017MAN D2676LF51Diesel 4-strokeTruck/Bus191g/kW.h[23] %
620disp=tableNaNdisp=tableScania AB DC16 078A Diesel 4-strokeElectricity generation190g/kW.h[24] %
1200disp=tableNaNdisp=tableearly 1990sWärtsilä 6L20Diesel 4-strokeMarine propulsion189.4g/kW.h[25] %
375disp=tableNaNdisp=table2019MAN D2676LF78Diesel 4-strokeTruck/Bus184g/kW.h[26] %
3600disp=tableNaNdisp=tableMAN Diesel 6L32/44CR Diesel 4-strokeMarine propulsion, Electricity generation172g/kW.h[27] %
4200disp=tableNaNdisp=table2015Wärtsilä W31Diesel 4-strokeMarine propulsion, Electricity generation165g/kW.h[28] %
34320disp=tableNaNdisp=table1998Diesel 2-strokeMarine propulsion, Electricity generation160g/kW.h[29] %
27060disp=tableNaNdisp=tableMAN Diesel S80ME-C9.4-TII Diesel 2-strokeMarine propulsion, Electricity generation154.5g/kW.h[30] %
34350disp=tableNaNdisp=tableMAN Diesel G95ME-C9 Diesel 2-strokeMarine propulsion154.5g/kW.h[31] %
605000disp=tableNaNdisp=table2016General Electric 9HA Combined cycle gas turbineElectricity generationNaNg/kW.h (eq.)62.2%[32]
640000disp=tableNaNdisp=table2021General Electric 7HA.3 Combined cycle gas turbineElectricity generation (proposed)NaNg/kW.h (eq.)63.9%[33]

Turboprop efficiency is only good at high power; SFC increases dramatically for approach at low power (30% Pmax) and especially at idle (7% Pmax) :

2,050 kW Pratt & Whitney Canada PW127 turboprop (1996)[34]
ModePowerfuel flowSFC Energy efficiency
Nominal idle (7%)192hp3.06kg/minNaN{{#expr:3.06*60/192}}%
Approach (30%) 825hp5.15kg/minNaN{{#expr:5.15*60/825}}%
Max cruise (78%) 2132hp8.28kg/minNaN{{#expr:8.28*60/2132}}%
Max climb (80%) 2192hp8.38kg/minNaN{{#expr:8.38*60/2192}}%
Max contin. (90%) 2475hp9.22kg/minNaN{{#expr:9.22*60/2475}}%
Take-off (100%) 2750hp9.9kg/minNaN{{#expr:9.9*60/2750}}%

See also

Further reading

Notes and References

  1. Web site: Operator Manual for 447/503/582 . Rotax . Sep 2010 . 2018-06-08 . https://web.archive.org/web/20170722033156/http://docusearch.flyrotax.com/files/pdf/d04495.pdf . 2017-07-22 . dead .
  2. Gas Turbine Engines . Aviation Week . January 2008 .
  3. Günter Mau: Handbuch Dieselmotoren im Kraftwerks- und Schiffsbetrieb, Vieweg (Springer), Braunschweig/Wiesbaden 1984,, p. 7
  4. Shimizu . Ritsuharu . Tadokoro . Tomoo . Nakanishi . Toru . Funamoto . Junichi . SAE Technical Paper Series . Mazda 4-Rotor Rotary Engine for the Le Mans 24-Hour Endurance Race . SAE International . 1992-02-01 . 1 . 0148-7191 . 10.4271/920309 . 4.
  5. Web site: Operator Manual for 914 series . Rotax . Apr 2010 . 2018-06-08 . https://web.archive.org/web/20170611004034/http://docusearch.flyrotax.com/files/pdf/d06153.pdf . 2017-06-11 . dead .
  6. Global Research . GE turbines and small engines overview . . https://arpa-e.energy.gov/2019-integrate-annual-meeting . Peter deBock . ARPA-e INTEGRATE meeting . September 18, 2019.
  7. Web site: Are Airplane Engines Inefficient? . Michael Soroka . March 26, 2014.
  8. Web site: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development . Ford Research and Advanced Engineering . May 13, 2011.
  9. Web site: MT7 Brochure . Rolls-Royce . 2012 . 2018-07-09 . https://web.archive.org/web/20170420204819/https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/customers/marine/mt7-brochure.pdf . 2017-04-20 . dead .
  10. Web site: Wright R-3350 "Cyclone 18" . Kimble D. McCutcheon . 27 October 2014 . dead . https://web.archive.org/web/20160801001759/http://www.enginehistory.org/Wright/Wright%20R-3350.pdf . 1 August 2016 .
  11. Book: http://www.sae.org/technical/papers/2004-01-0064 . Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy . . 8 March 2004. 10.4271/2004-01-0064 . SAE Technical Paper Series . Muta . Koichiro . Yamazaki . Makoto . Tokieda . Junji . 1 .
  12. Web site: 22 October 2013 . GA-ASI's Improved Gray Eagle Flies Over 45 Hours Non-Stop . 2024-07-20 . General Atomics . en.
  13. 27–29 July 2015 . 10.2514/6.2015-4028 . 51st . AIAA/SAE/ASEE Joint Propulsion Conference . A composite cycle engine concept with hecto-pressure ratio . Kaiser . Sascha . Donnerhack . Stefan . Lundbladh . Anders . Seitz . Arne.
  14. inter-action association, 1987
  15. Web site: Marine Trent . Civil Engineering Handbook . 19 Mar 2015.
  16. Web site: Napier Nomad . Flight . 30 April 1954.
  17. The new Audi A8 3.3 TDI quattro: Top TDI for the luxury class . Audi AG . July 10, 2000.
  18. Web site: Jane's Fighting Aircraft of World War II . Bracken Books . London, UK . 1989.
  19. Web site: LM6000 Marine Gas Turbine . General Electric . 2016 . dead . https://web.archive.org/web/20161119115601/http://www.geaviation.com/engines/docs/marine/datasheet-lm6000.pdf . 2016-11-19 .
  20. Web site: BMW 2.0d (N47) . Auto-innovations . June 2007 . fr.
  21. Book: http://www.sae.org/technical/papers/900648 . The New Audi 5-Cylinder Turbo Diesel Engine: The First Passenger Car Diesel Engine with Second Generation Direct Injection . . 1 February 1990 . 10.4271/900648 . SAE Technical Paper Series . Stock . Dieter . Bauder . Richard . 1 .
  22. Web site: Realizing Future Trends in Diesel Engine Development . Society of Automotive Engineers/VAG.
  23. Web site: MAN TGX 2019 . MAN Truck & Bus.
  24. Web site: DC16 078A . Scania AB.
  25. Web site: Wärtsilä 20 product guide . Wärtsilä . 14 February 2017 .
  26. Web site: MAN TGX 2019 . MAN Truck & Bus.
  27. Web site: Four-Stroke Propulsion Engines . https://web.archive.org/web/20160417234415/http://marine.man.eu/docs/librariesprovider6/4-Stroke-Engines/2015-four-stroke-propulsion-engines.pdf . dead . 2016-04-17 . Man Diesel . 2015 .
  28. Web site: The new Wärtsilä 31 engine . Wärtsilä Technical Journal . 20 October 2015 .
  29. Web site: RTA-C Technology Review . Wärtsilä . 2004 . dead . https://web.archive.org/web/20051226062109/http://www.wartsila.com/Wartsila/docs/en/ship_power/media_publications/brochures/product/engines/rtac_tr.pdf . December 26, 2005 .
  30. Web site: MAN B&W S80ME-C9.4-TII Project Guide . Man Diesel . May 2014 . 2016-06-15 . 2016-08-09 . https://web.archive.org/web/20160809092926/http://marine.man.eu/applications/projectguides/2stroke/content/printed/S80ME-C9_4.pdf . dead .
  31. Web site: MAN B&W G95ME-C9.2-TII Project Guide . Man Diesel . May 2014 . 16.
  32. Here's Why The Latest Guinness World Record Will Keep France Lit Up Long After Soccer Fans Leave . Tomas Kellner . . 17 Jun 2016 . 14 April 2017 . 16 June 2017 . https://web.archive.org/web/20170616021542/http://www.gereports.com/bouchain/ . dead .
  33. Web site: GE Unveils New H-Class Gas Turbine—and Already Has a First Order . October 2, 2019.
  34. Web site: ATR: The Optimum Choice for a Friendly Environment . https://web.archive.org/web/20160808173542/http://web.fc.fi/data/files/ATR_TheOptimumChoice.pdf . dead . 2016-08-08 . PW127F engine gaseous emissions . . June 2001 .