Bound state in the continuum explained

A bound state in the continuum (BIC) is an eigenstate of some particular quantum system with the following properties:

  1. Energy lies in the continuous spectrum of propagating modes of the surrounding space;
  2. The state does not interact with any of the states of the continuum (it cannot emit and cannot be excited by any wave that came from the infinity);
  3. Energy is real and Q factor is infinite, if there is no absorption in the system.

BICs are observed in electronic, photonic, acoustic systems, and are a general phenomenon exhibited by systems in which wave physics applies.

Bound states in the forbidden zone, where there are no finite solutions at infinity, are widely known (atoms, quantum dots, defects in semiconductors). For solutions in a continuum that are associated with this continuum, resonant states are known, which decay (lose energy) over time. They can be excited, for example, by an incident wave with the same energy. The bound states in the continuum have real energy eigenvalues and therefore do not interact with the states of the continuous spectrum and cannot decay.[1]

Classification of BICs by mechanism of occurrence

Source:[1]

BICs arising when solving the inverse problem

Wigner-von Neumann's BIC (Potential engineering)

The wave function of one of the continuum states is modified to be normalizable and the corresponding potential is selected for it.

Hopping rate engineering

In the tight binding approximation, the jump rates are modified so that the state becomes localized

Notes and References

  1. 10.1038/natrevmats.2016.48 . Bound states in the continuum . 2016 . Hsu . Chia Wei . Zhen . Bo . Stone . A. Douglas . Joannopoulos . John D. . Soljačić . Marin . Nature Reviews Materials . 1 . 9 . 16048 . 2016NatRM...116048H . 1721.1/108400 . 123778221 . free .
  2. J. von Neumann, E.P. Wigner . Phys. Z. . 1929 . 30 . 465–467 .
  3. Zafar Ahmed et al 2019 Phys. Scr. 94 105214
  4. Simon, B. On positive eigenvalues of one-body Schrödinger operators. Commun. Pure Appl. Math. 22, 531-538 (1969)
  5. Stillinger, F. H. & Herrick, D. R. Bound states in the continuum. Phys. Rev. A 11, 446-454 (1975)
  6. D. R. Herrick, "Construction of bound states in the continuum for epitaxial heterostructure superlattices," Physica B 85, 44-50 (1977).
  7. Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012)
  8. Corrielli, G., Della Valle, G., Crespi, A., Osellame, R. & Longhi, S. Observation of surface states with algebraic localization. Phys. Rev. Lett. 111, 220403 (2013)
  9. Stefano Longhi. Non-Hermitian tight-binding network engineering. Phys. Rev. A 93, 022102
  10. Stefano Longhi, "Bound states in the continuum in PT-symmetric optical lattices, " Opt. Lett. 39, 1697—1700 (2014)
  11. McIver, M. An example of non-uniqueness in the two-dimensional linear water wave problem. J. Fluid Mech. 315, 257—266 (1996)
  12. Kuznetsov, N. & McIver, P. On uniqueness and trapped modes in the water-wave problem for a surface-piercing axisymmetric body. Q. J. Mech. Appl. Math. 50, 565—580 (1997)
  13. Porter, R. & Evans, D. V. Water-wave trapping by floating circular cylinders. J. Fluid Mech. 633, 311—325 (2009).
  14. 10.1017/S0022112010004222 . Experimental study on water-wave trapped modes . 2011 . Cobelli . P. J. . Pagneux . V. . Maurel . A. . Petitjeans . P. . Journal of Fluid Mechanics . 666 . 445–476 . 2011JFM...666..445C . 55836054 .
  15. Cattapan, G. & Lotti, P. Bound states in the continuum in two-dimensional serial structures. Eur. Phys. J. B 66, 517–523 (2008)
  16. Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Trapping of an electron in the transmission through two quantum dots coupled by a wire. JETP Lett. 82, 498–503 (2005)
  17. Díaz-Tendero, S., Borisov, A. G. & Gauyacq, J.-P. Extraordinary electron propagation length in a metallic double chain supported on a metal surface. Phys. Rev. Lett. 102, 166807 (2009)
  18. Sadreev, A. F., Maksimov, D. N. & Pilipchuk, A. S. Gate controlled resonant widths in double-bend waveguides: bound states in the continuum. J. Phys. Condens. Matter 27, 295303 (2015).
  19. Suh, W., Yanik, M. F., Solgaard, O. & Fan, S. Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs. Appl. Phys. Lett. 82, 1999—2001 (2003)
  20. Ndangali, R. F. & Shabanov, S. V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders. J. Math. Phys. 51, 102901 (2010)
  21. Bound States in the Continuum in Magnetophotonic Metasurfaces . JETP Letters . 2020 . 111 . 1. 46–49 . 10.1134/S0021364020010105. 2020JETPL.111...46C. 255230442 . Chernyak . A. M. . Barsukova . M. G. . Shorokhov . A. S. . Musorin . A. I. . Fedyanin . A. A. .
  22. Friedrich, H. & Wintgen, D. Interfering resonances and bound states in the continuum. Phys. Rev. A 32, 3231-3242 (1985)
  23. 10.1016/0375-9601(90)90361-q . Trapping in competitive decay of degenerate states . 1990 . Remacle . F. . Munster . M. . Pavlov-Verevkin . V.B. . Desouter-Lecomte . M. . Physics Letters A . 145 . 5 . 265–268 . 1990PhLA..145..265R .
  24. Friedrich, H. & Wintgen, D. Physical realization of bound states in the continuum. Phys. Rev. A 31, 3964-3966 (1985)
  25. 10.1103/physrevlett.55.1979 . Autoionization Inhibited by Internal Interferences . 1985 . Neukammer . J. . Rinneberg . H. . Jönsson . G. . Cooke . W. E. . Hieronymus . H. . König . A. . Vietzke . K. . Spinger-Bolk . H. . Physical Review Letters . 55 . 19 . 1979–1982 . 10031978 . 1985PhRvL..55.1979N .
  26. Sablikov, V. A. & Sukhanov, A. A. Helical bound states in the continuum of the edge states in two dimensional topological insulators. Phys. Lett. A 379, 1775—1779 (2015)
  27. Sadreev, A. F., Bulgakov, E. N. & Rotter, I. Bound states in the continuum in open quantum billiards with a variable shape. Phys. Rev. B 73, 235342 (2006)
  28. Texier, C. Scattering theory on graphs: II. The Friedel sum rule. J. Phys. A 35, 3389 (2002).
  29. Hein, S., Koch, W. & Nannen, L. Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems. J. Fluid Mech. 692, 257—287 (2012)
  30. Lyapina, A. A., Maksimov, D. N., Pilipchuk, A. S. & Sadreev, A. F. Bound states in the continuum in open acoustic resonators. J. Fluid Mech. 780, 370—387 (2015)
  31. 10.1103/physreva.98.053840 . Avoided crossings and bound states in the continuum in low-contrast dielectric gratings . 2018 . Bulgakov . Evgeny N. . Maksimov . Dmitrii N. . Physical Review A . 98 . 5 . 053840 . 1808.03180 . 2018PhRvA..98e3840B .
  32. 10.1515/nanoph-2020-0346 . Bound states in the continuum (BIC) accompanied by avoided crossings in leaky-mode photonic lattices . 2020 . Lee . Sun-Goo . Kim . Seong-Han . Kee . Chul-Sik . Nanophotonics . 9 . 14 . 4373–4380 . 2007.00371 . 2020Nanop...9..346L .
  33. 10.1038/s42005-020-0353-z . One-dimensional photonic bound states in the continuum . 2020 . Pankin . P. S. . Wu . B.-R. . Yang . J.-H. . Chen . K.-P. . Timofeev . I. V. . Sadreev . A. F. . Communications Physics . 3 . 1 . 91 . 2020CmPhy...3...91P . free .
  34. Embedded Photonic Eigenvalues in 3D Nanostructures. Francesco Monticone and Andrea Alù. Phys. Rev. Lett. 112, 213903 (2014)
  35. M. G. Silveirinha, Phys. Rev. A 89, 023813 (2014).
  36. 10.1103/physrevlett.119.243901 . High-

    Q

    Supercavity Modes in Subwavelength Dielectric Resonators . 2017 . Rybin . Mikhail V. . Koshelev . Kirill L. . Sadrieva . Zarina F. . Samusev . Kirill B. . Bogdanov . Andrey A. . Limonov . Mikhail F. . Kivshar . Yuri S. . Physical Review Letters . 119 . 24 . 243901 . 29286713 . 1885/238511 . 41020099 . free .
  37. K. Koshelev et al., Science 367, 288—292 (2020).
  38. S. Gladyshev, K. Frizyuk, A. Bogdanov Phys. Rev. B 102, 075103 — Published 3 August 2020
  39. 10.1038/srep31908 . Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs . 2016 . Gao . Xingwei . Hsu . Chia Wei . Zhen . Bo . Lin . Xiao . Joannopoulos . John D. . Soljačić . Marin . Chen . Hongsheng . Scientific Reports . 6 . 31908 . 27557882 . 4997268 . 1603.02815 . 2016NatSR...631908G .
  40. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188—191 (2013)
  41. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljaˇci ́c, "Topological Nature of Optical Bound States in the Continuum, " Phys. Rev. Lett. 113, 257401 (2014)
  42. Porter, R. & Evans, D. V. Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays. Wave Motion 43, 29-50 (2005).
  43. Bulgakov, E. N. & Sadreev, A. F. Light trapping above the light cone in a one-dimensional array of dielectric spheres. Phys. Rev. A 92, 023816 (2015)
  44. McIver, M., Linton, C. M., McIver, P., Zhang, J. & Porter, R. Embedded trapped modes for obstacles in two-dimensional waveguides. Q. J. Mech. Appl. Math. 54, 273—293 (2001).
  45. Linton, C. M. & Ratcliffe, K. Bound states in coupled guides. I. Two dimensions. J. Math. Phys. 45, 1359—1379 (2004).
  46. Chen, Y. et al. Mechanical bound state in the continuum for optomechanical microresonators. New J. Phys. 18, 063031 (2016)
  47. Yamanouchi, K. & Shibayama, K. Propagation and amplification of rayleigh waves and piezoelectric leaky surface waves in LiNbO3 . J. Appl. Phys. 43, 856—862 (1972).
  48. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljaˇci ́c, "Topological Nature of Optical Bound States in the Continuum, " Phys. Rev. Lett. 113, 257401 (2014).
  49. Z. Sadrieva, K. Frizyuk, M. Petrov, Yu. Kivshar, and A.Bogdanov «Multipolar origin of bound states in the continuum» Phys. Rev. B 100, 115303
  50. Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012)
  51. Dreisow, F. et al. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 34, 2405—2407 (2009)
  52. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).
  53. Robnik, M. A simple separable Hamiltonian having bound states in the continuum. J. Phys. A 19, 3845 (1986).
  54. Duclos, P., Exner, P. & Meller, B. Open quantum dots: resonances from perturbed symmetry and bound states in strong magnetic fields. Rep. Math. Phys. 47, 253—267 (2001).
  55. Prodanovic´, N., Milanovic´, V., Ikonic´, Z., Indjin, D. & Harrison, P. Bound states in continuum: quantum dots in a quantum well. Phys. Lett. A 377, 2177—2181 (2013).
  56. Čtyroký, J. Photonic bandgap structures in planar waveguides. J. Opt. Soc. Am. A 18, 435—441 (2001).
  57. Watts, M. R., Johnson, S. G., Haus, H. A. & Joannopoulos, J. D. Electromagnetic cavity with arbitrary Q and small modal volume without a complete photonic bandgap. Opt. Lett. 27, 1785—1787 (2002).