Borosulfate Explained

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO<sub>4</sub>)<sub>4</sub>]5- there is no condensation, each ion stands alone. In [B(SO<sub>4</sub>)<sub>3</sub>]3- the anions are linked into a chain, a chain of loops, or as [B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]6− in a cycle. Finally in [B(SO<sub>4</sub>)<sub>2</sub>] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO<sub>4</sub>)<sub>4</sub>] in 2012 by the research group of Henning Höppe,[1] although the compound class as such had been postulated already in 1962 by G. Schott and H. U. Kibbel.[2] Over 80 unique compounds are known as of 2024.

They are distinct from the borate sulfates which have separate, uncondensed sulfate and borate ions.

Related compounds include boroselenates, borotellurates, and also boroantimonates, borogallates, borogermanates, borophosphates, boroselenites and borosilicates.[3]

Formation

Borosulfates are formed by heating boric oxide, oleum, or sulfuric acid, with metal carbonates. The degree of condensation is varied with the ratio of oleum to sulfuric acid. Pure oleum is more likely to yield compounds with disulfate groups.

Reactions

When heated to around 500 °C the borosulfates decompose by emitting SO3 vapour and form a metal sulfate and boric oxide.

List

chemmwcrystal systemspace groupunit cell Åvolumedensitycommentreferences
boron sulfateB2S2O9229.74monoclinicC2a=7.7600 b=4.1664 c=8.6134 β=94.785 Z=2277.512.749no cations; 3D mesh[4]
H[B(HSO<sub>4</sub>)<sub>4</sub>]monoclinicP21/ca=15.6974, b=11.436, c=8.5557; β=90.334°; Z=8superacid[5]
H3O[B(SO<sub>4</sub>)<sub>2</sub>]P4/ncca=9.1377, c=7.3423; Z=4
H[B(SO<sub>4</sub>)(S<sub>2</sub>O<sub>7</sub>)]monoclinicP21/ca=15.697 b=11.4362 c=8.5557 β=90.334
Li[B(SO<sub>4</sub>)<sub>2</sub>] Pca = 7.635, b = 9.342, c = 8.432, and β = 92.55°3D network, like tectosilicate[6]
Li[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>] orthorhombicP212121a = 10.862, b = 10.877, c = 17.769
Li5[B(SO<sub>4</sub>)<sub>4</sub>]orthorhombicP21/ca=8.0191 b=10.2111 c=15.0401[7]
Be[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>]monoclinicC2/ca= 23.856, b= 7.3507, c= 12.3235, β= 98.724(2)°, Z=82136.12.58colourless[8]
NH4[B(SO<sub>4</sub>)<sub>2</sub>]P4/ncca=9.1980 c=7.2458decompose 320 °C, proton conductor[9]
NH4[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>] monoclinicCca=11.4403 b=14.9439 c=13.8693 β=93.662
(NH4)2B4SO10271.38monoclinicC2a=11.3685 b=6.5541 c=12.8328 β=106.247 4918.01.964SHG 1.1 × KDP; min PM wavelength 252 nm; decompose 300 °C[10]
[NH<sub>4</sub>]3[B(SO<sub>4</sub>)<sub>3</sub>]343.12orthorhombicIbca a=7.2858 b=14.7048 c=22.7052 Z=82433.21.928decompose 320 °C chains[11]
Na[B(SO<sub>4</sub>)<sub>2</sub>]monoclinicP2/ca=5.434 b=7.570 c=7.766 β=99.74
Na[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>] monoclinicP21/ca=10.949, b=8.49, c=12.701; β=110.227°; Z=4
Na5[B(SO<sub>4</sub>)<sub>4</sub>]-IorthorhombicPca21a = 10.730, b = 13.891, c = 18.197
Na5[B(SO<sub>4</sub>)<sub>4</sub>]-IIorthorhombicP212121a = 8.624, b = 9.275, c = 16.671
α-Mg4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]711.22trigonalPa=8.0165 c=7.4858 Z=1416.622.835colourless [12]
β-Mg4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]711.22hexagonalPa = 13.9196, c = 7.4854, Z = 312532.821colourless
Mg[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>]430.17monoclinicC2/ca = 17.443, b = 5.3145, c = 14.2906 β = 126.323° Z = 41067.32.677phyllosilicate structure colourless decompose 550 °C
β-Mg[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] monoclinicP21/na=7.9100 b=8.0815 c=9.0376 β=111.37° Z=2269.012.667colourless decompose 550 °C[13]
K[B(SO<sub>4</sub>)<sub>2</sub>]P4/ncca=8.9739 c=7.4114
K[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>] monoclinicCca=11.3368, b=14.66, c=13.6650; β=94.235°; Z=8
K2B4SO10313.50monoclinicC2a=11.2631 b=6.4339 c=12.649 β=105.707° Z=4882.42.360colourless[14]
pentapotassium borosulfateK5[B(SO<sub>4</sub>)<sub>4</sub>] P41a=9.9023 c=16.18711687.22.471first discovered[15]
K3[B(SO<sub>4</sub>)<sub>3</sub>] orthorhombicIbca a = 7.074, b = 14.266, c = 22.58
K4[BS<sub>4</sub>O<sub>15</sub>(OH)]monoclinicI2/aa=14.524 b=7.3916 c=15.7857 β=115.50
CaB2S4O16monoclinicP21/ca=5.5188 b=15.1288 c=13.2660 β=92.88sheet
Mn[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] monoclinicP21/na = 8.0435, b = 7.9174, c = 9.3082, β = 110.94° Z=2553.63colourless[16]
α-Mn4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]833.74trigonalPa=8.1086 c=7.7509 Z=1441.33.137colourless
β-Mn4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]833.74trigonalPa=13.9196 c=7.4854
α-Co[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] monoclinicC2/ca=17.4254 b=5.3397 c=14.3214 β=126.03° Z=4269.402.860pink
β-Co[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] monoclinicP21/na=7.8892 b=8.1042 c= 9.0409 β=111.29° Z=2269.292.803pink
α-Co4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]849.70trigonalPa=7.991 c=7.669 Z=1418.03.376pink
α-Ni4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]848.82trigonalPa=7.9359 c=7.4398 Z=1405.773.474yellow
Cu[B(SO<sub>4</sub>)<sub>2</sub>(HSO<sub>4</sub>)]triclinicPa=5.3096 b=7.0752 c=11.1977 α=81.154 β=80.302 γ=80.897cyclic
Cu[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>]triclinicPa=5.2470 b=7.1371 c=7.9222 α=73.814 β=70.692 γ=86.642chain
Zn[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] monoclinicP21/na = 8.0435, b = 7.9174, c = 9.3082, β = 111.26° Z=2534.36colourless
α-Zn4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]875.46trigonalPa=7.9971 c=7.4895 Z=1414.813.505colourless
Rb2B4SO10406.24monoclinicC2a=11.3127 b=6.5152 c=12.971 β=105.411° Z=4921.62.928colourless
Rb3[B(SO<sub>4</sub>)<sub>3</sub>]orthorhombicIbcaa = 7.2759, b = 14.794, c = 22.637
Rb4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>4</sub>]orthorhombicPnmaa=8.0415 b=10.647 c=20.425
Rb5[B(SO<sub>4</sub>)<sub>4</sub>]tetragonalP43212a=10.148 c=16.689 Z=4band gap 3.99 eV[17]
Rb3HB4S2O14P63/ma = 6.502, c = 19.02 Z=2[18]
LiRb4[B(SO<sub>4</sub>)<sub>4</sub>]743.8monoclinica=7.5551, c=14.560, c=7.5517 β=90.2372 Z=2transparent[19]
LiRb4[B(SO<sub>4</sub>)<sub>4</sub>]743.8tetragonalIa=7.6128, c=14.631, Z=2at 500K
Sr[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] 493.48orthorhombicPnmaa=12.574 b=12.421 c=7.319 Z=41143.12.867decompose 400 °C
Sr[B<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>(S<sub>2</sub>O<sub>7</sub>)]573.54monoclinicP21/na = 7.470, b = 15.334, c = 12.220, β = 93.29° Z=41397.52.726[20]
Sr[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>] orthorhombicPnmaa=1657.3 b=12.037 c=4.39484
Sr[B<sub>3</sub>O(SO<sub>4</sub>)<sub>4</sub>(SO<sub>4</sub>H)]617.36monoclinicP21/ca = 11.3309, b= 7.1482, c = 19.355, β = 106.878°, Z = 4 1500.12.73colourless; Sr in 9 coordination by sulfate oxygens[21]
Y2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.5172 b=11.3941 c=10.8994 β=93.447cyclic
Ag[B(SO<sub>4</sub>)<sub>2</sub>]P4/ncca=8.6679 c=7.2897
Ag[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>]monoclinicP21/ca = 9.507, b = 9.601, c = 11.730, β = 98.35° Z=41059.32.953colourless[22]
Cd[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>][23]
Cd[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>]438.20orthorhombicPnmaa=8.9692 b=11.520 c=8.7275 Z=4901.83.23colourless
Cd4[B<sub>2</sub>O(SO<sub>4</sub>)<sub>6</sub>]trigonalPa=8.2222 c=7.9788 Z=1467.143.78colourless
(I4)[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>]2triclinicPa = 11.3714 b = 11.5509 c = 12.7811 α = 68.638° β = 68.275° γ = 64.626° Z=21366.162.999orange-brown[24]
Cs2B4SO10501.12monoclinicC2a=11.4012 b=6.5997 c=13.5702 β=103.934° Z=4919.043.359colourless
Cs2[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>]monoclinicP2/ca=14.765 b=6.710 c=12.528 β=104.50
Cs3HB4S2O14P63/ma = 6.5648, c = 19.5669 Z=2
Cs[B(SO<sub>4</sub>)(S<sub>2</sub>O<sub>7</sub>)] monoclinicP21/ca=10.4525, b=11.319, c=8.2760; β=103.206; Z=4
Cs3Li2[B(SO<sub>4</sub>)<sub>4</sub>]monoclinicP21/na=13.7698 c=8.2376 c=13.9066 β=91.778
Cs3Na2[B(SO<sub>4</sub>)<sub>4</sub>]monoclinicP21/ca=13.6406 b=7.9475 c=13.9573 β=990.781
CsK4[B(SO<sub>4</sub>)<sub>4</sub>]P43212a=9.9433 c=16.881
Ba[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>] orthorhombicPnnaa = 12.791, b = 12.800, c = 7.317 Z = 4[25]
Ba[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>] orthorhombicPnmaa=17.1848 b=12.3805 c=4.4226
Ba[B(S<sub>2</sub>O<sub>7</sub>)<sub>2</sub>]2monoclinicI2/aa = 11.6077, b = 8.9144, c = 21.303, β = 104.034° Z = 4chains
La2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=1379.2 b=1158.9 c=1139.5 β=93.611cyclic
Ce2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/c13.740 b=11.5371 c=11.3057 β=93.661cyclic
Pr2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.711 b=11.5305 c=11.2643 β=93.668cyclic
Nd2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.6775 b=11.51.34 11.2046 β=93.5909cyclic
Sm2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.633 b=11.492 c=11.112 β=93.567cyclic
Eu2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.602 b=11.470 c=11.050 β=93.465cyclic
Gd2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.5697 b=11.4426 c=11.0271 β=cyclic
Tb2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.5601 b=11.42.48 c=10.9881 β=93.534cyclic
Dy2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.568 b=11.425 c=10.9703 β=93.540cyclic
Ho2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.505 b=11.409 c=10.921 β=93.453cyclic
Er2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.551 b=11.411 c=10.882 β=93.41cyclic
Tm2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.4981 b=11.3617 10.8327 β=93.4500cyclic
Yb2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.495 b=11.3452 c=10.7961 β=93.390cyclic
Lu2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]monoclinicC2/ca=13.469 b=11.364 c=10.799 β=93.369cyclic
Pb[B<sub>2</sub>(SO<sub>4</sub>)<sub>4</sub>]613.05orthorhombicPnnaa=12.516 b=12.521 c=7.302 Z=4 114.433.558loop chain[26]
Pb[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>]orthorhombicP21/ma=4.4000 b=12.1019 c=8.6043
Bi2[B<sub>2</sub>(SO<sub>4</sub>)<sub>6</sub>]659.08orthorhombicC2/ca = 13.568, b = 11.490, c = 11.106 Z=41728.83.894
(H3O)Bi[B(SO<sub>4</sub>)<sub>2</sub>]4 1039.72Ia=11.857, c=8.149 Z=21156.842.99colourless; non-linear optical
(UO2)[B(SO<sub>4</sub>)<sub>2</sub>(SO<sub>3</sub>OH)]569.52triclinicPa=5.448 b=7.021 c=13.522 α =92.248° β =95.347° γ =101.987° Z=23.762green[27]
(UO2)2[B<sub>2</sub>O(SO<sub>4</sub>)<sub>3</sub>(SO<sub>3</sub>OH)<sub>2</sub>]1058.23monoclinicP21/na=10.872 b=11.383 c=14.812 β=92.481 Z=43.838yellow

Notes and References

  1. Netzsch. Philip. Höppe. Henning A.. 2020-09-30. Synthesis and Characterization of the Chain Borosulfates (NH 4) 3 [B(SO 4) 3 ] and Sr[B 2 (SO 4) 4 ]. Zeitschrift für anorganische und allgemeine Chemie. en. 646. 18. 1563–1569. 10.1002/zaac.202000105. 0044-2313. free.
  2. Schott . G. . Kibbel . H. U. . Über Sulfatoborate . Zeitschrift für anorganische und allgemeine Chemie . en . 314 . 1-2 . 104–112 . 10.1002/zaac.19623140113 . 0044-2313.
  3. Kong. Fang. Ma. Yunxiang. Mao. Jianggao. January 2018. Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations: Lanthanide Inorganic Solids Based on Main Group Borates and Oxyanions of Lone Pair Cations. Chinese Journal of Chemistry. en. 36. 1. 63–72. 10.1002/cjoc.201700597.
  4. Logemann. Christian. Wickleder. Mathias S.. 2013-12-23. B 2 S 2 O 9 : A Boron Sulfate with Phyllosilicate Topology. Angewandte Chemie International Edition. en. 52. 52. 14229–14232. 10.1002/anie.201307056. 24214383.
  5. Daub. Michael. Kazmierczak. Karolina. Höppe. Henning A.. Hillebrecht. Harald. 2013. The Borosulfate Story Goes on—From Alkali and Oxonium Salts to Polyacids. Chemistry – A European Journal. en. 19. 50. 16954–16962. 10.1002/chem.201303012. 24203813. 1521-3765.
  6. Daub. Michael. Kazmierczak. Karolina. Gross. Peter. Höppe. Henning. Hillebrecht. Harald. 2013-05-20. Exploring a New Structure Family: Alkali Borosulfates Na 5 [B(SO 4) 4 ], A 3 [B(SO 4) 3 ] (A = K, Rb), Li[B(SO 4) 2 ], and Li[B(S 2 O 7) 2 ]]. Inorganic Chemistry. en. 52. 10. 6011–6020. 10.1021/ic400267s. 23656591. 0020-1669.
  7. Bruns. Jörn. Höppe. Henning A.. Daub. Michael. Hillebrecht. Harald. Huppertz. Hubert. 2020-06-26. Borosulfates—Synthesis and Structural Chemistry of Silicate Analogue Compounds. Chemistry – A European Journal. en. 26. 36. 7966–7980. 10.1002/chem.201905449. 0947-6539. 7384169. 31943390.
  8. Sutorius. Stefan. Hanrath. Michael. Bruns. Jörn. 2022-02-09. Be[B2(SO4)4] – A Borosulfate exhibiting Ino- and Phyllosilicate Analogue Topology. European Journal of Inorganic Chemistry. 2022 . 11 . en. ejic.202200009. 10.1002/ejic.202200009. 246719711. 1434-1948. free.
  9. Ward. Matthew D.. Chaloux. Brian L.. Johannes. Michelle D.. Epshteyn. Albert. October 2020. Facile Proton Transport in Ammonium Borosulfate—An Unhumidified Solid Acid Polyelectrolyte for Intermediate Temperatures. Advanced Materials. en. 32. 42. 2003667. 10.1002/adma.202003667. 32924200. 221672277. 0935-9648. free. 2020AdM....3203667W .
  10. Li. Zijian. Jin. Wenqi. Zhang. Fangfang. Chen. Zilong. Yang. Zhihua. Pan. Shilie. 2021-10-09. Achieving Short-Wavelength Phase-Matching Second Harmonic Generation in Boron-Rich Borosulfate with Planar [BO3] Units]. Angewandte Chemie International Edition. 61. 4. en. anie.202112844. 10.1002/anie.202112844. 34626043. 238528455. 1433-7851.
  11. Hämmer. Matthias. Bayarjargal. Lkhamsuren. Höppe. Henning A.. 2020-11-12. The First Bismuth Borosulfates Comprising Oxonium and a Tectosilicate-Analogous Anion. Angewandte Chemie International Edition. 60. 3. en. 1503–1506. 10.1002/anie.202011786. 7839778. 33026134. 1433-7851. free.
  12. Netzsch. Philip. Gross. Peter. Takahashi. Hirotaka. Höppe. Henning A.. 2018-07-16. Synthesis and Characterization of the First Borosulfates of Magnesium, Manganese, Cobalt, Nickel, and Zinc. Inorganic Chemistry. en. 57. 14. 8530–8539. 10.1021/acs.inorgchem.8b01234. 29957944. 0020-1669.
  13. Netzsch. Philip. Pielnhofer. Florian. Glaum. Robert. Höppe. Henning A.. 2020-11-17. Synthesis-Controlled Polymorphism and Optical Properties of Phyllosilicate-Analogous Borosulfates M [B 2 (SO 4) 4 ] (M =Mg, Co). Chemistry – A European Journal. en. 26. 64. 14745–14753. 10.1002/chem.202003214. 7756226. 32744744. 0947-6539. free.
  14. Li . Zijian . Jin . Wenqi . Zhang . Fangfang . Yang . Zhihua . Pan . Shilie . 2022-11-23 . Exploring Short-Wavelength Phase-Matching Nonlinear Optical Crystals by Employing KBe 2 BO 3 F 2 as the Template . ACS Central Science . en . 8 . 11 . 1557–1564 . 10.1021/acscentsci.2c00832 . 2374-7943 . 9686211 . 36439311.
  15. Höppe. Henning A.. Kazmierczak. Karolina. Daub. Michael. Förg. Katharina. Fuchs. Franziska. Hillebrecht. Harald. 2012-06-18. The First Borosulfate K5[B(SO4)4]]. Angewandte Chemie International Edition. en. 51. 25. 6255–6257. 10.1002/anie.201109237. 22566359.
  16. Pasqualini . Leonard C. . Huppertz . Hubert . Bruns . Jörn . 2019-12-17 . M[B2(SO4)4] (M = Mn, Zn)—Syntheses and Crystal Structures of Two New Phyllosilicate Analogue Borosulfates . Inorganics . en . 7 . 12 . 145 . 10.3390/inorganics7120145 . 2304-6740. free .
  17. Dong. Lingyun. Pan. Shilie. Wang. Ying. Yu. Hongwei. Lin. Xiaoxia. Han. Shujuan. March 2015. Synthesis and structural characterization of a new rubidium borosulfate, Rb5BS4O16. Materials Research Bulletin. en. 63. 93–98. 10.1016/j.materresbull.2014.11.047.
  18. Daub . Michael . Hillebrecht . Harald . September 2015 . Borosulfates Cs 2 B 2 S 3 O 13, Rb 4 B 2 S 4 O 17, and A 3 HB 4 S 2 O 14 (A = Rb, Cs) – Crystalline Approximants for Vitreous B 2 O 3 ? . European Journal of Inorganic Chemistry . en . 2015 . 25 . 4176–4181 . 10.1002/ejic.201500603 . 1434-1948.
  19. Li. Yanqiang. Zhou. Zhengyang. Zhao. Sangen. Liang. Fei. Ding. Qingran. Sun. Junliang. Lin. Zheshuai. Hong. Maochun. Luo. Junhua. 2021-03-08. A Deep-UV Nonlinear Optical Borosulfate with Incommensurate Modulations. Angewandte Chemie International Edition. 60. 20. en. 11457–11463. 10.1002/anie.202102107. 33686736. 232160602. 1433-7851.
  20. Netzsch. Philip. Höppe. Henning A.. 2020-11-26. Sr[B 2 (SO 4) 3 (S 2 O 7)]

    A Borosulfate with an Unprecedented Chain Structure Comprising Disulfate Groups]

    . Inorganic Chemistry. 59. 24. en. 18102–18108. 10.1021/acs.inorgchem.0c02560. 33241934. 227175679. 0020-1669.
  21. Pasqualini. Leonard. Huppertz. Hubert. Je. Minyeong. Choi. Heechae. Bruns. Jörn. 2021-06-13. Triple Vertex Linkage of (BO4)-Tetrahedra in a Borosulfate: Synthesis, Crystal Structure, and Quantum Chemical Investigation of Sr[B3O(SO4)4(SO4H)]. Angewandte Chemie International Edition. 60. 36. en. 19740–19743. 34121302. 10.1002/anie.202106337 . 8456809 . 1433-7851. free.
  22. Netzsch. Philip. Höppe. Henning A.. 2020-12-29. Ag[B(S2O7)2]: The First Transition Metal Borosulfate Featuring Disulfate Groups. European Journal of Inorganic Chemistry. 2021. 11. en. 1065–1070. 10.1002/ejic.202001095. 1434-1948. free.
  23. Hämmer . Matthias . Höppe . Henning A. . 2022-09-02 . The Unconventional Cadmium Borosulfates Cd[B2O(SO4)3] and Cd4[B2O(SO4)6] . Zeitschrift für anorganische und allgemeine Chemie . 648 . 21 . en . zaac.202200197 . 10.1002/zaac.202200197 . 252059729 . 0044-2313. free .
  24. van Gerven . David . Sutorius . Stefan . Bruns . Jörn . Wickleder . Mathias S. . 2022-07-20 . Stabilizing the Homopolycation (I 4) 2+ with a Hexasulfate in (I 4)[S 6 O 19 ] and a Borosulfate in (I 4)[B(S 2 O 7) 2 ] 2 . ChemistryOpen . 11 . 11 . e202200122 . en . 10.1002/open.202200122 . 35856862 . 9630045 . 250941699 . 2191-1363.
  25. Netzsch. Philip. Pielnhofer. Florian. Höppe. Henning A.. 2020-10-19. From S–O–S to B–O–S to B–O–B Bridges: Ba[B(S 2 O 7) 2 ] 2 as a Model System for the Structural Diversity in Borosulfate Chemistry]. Inorganic Chemistry. en. 59. 20. 15180–15188. 10.1021/acs.inorgchem.0c02156. 33001636. 222145994. 0020-1669.
  26. Schönegger. Sandra. Bruns. Jörn. Gartner. Benjamin. Wurst. Klaus. Huppertz. Hubert. 2018-12-31. Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4) 4 ]: Synthesis and Characterization of the First Lead(II) Borosulfate Pb[B 2 (SO 4) 4 ]. Zeitschrift für anorganische und allgemeine Chemie. en. 644. 24. 1702–1706. 10.1002/zaac.201800130. free.
  27. Sweet . Teagan F. M. . Felton . Daniel E. . Szymanowski . Jennifer E. S. . Burns . Peter C. . 2022-09-01 . Targeting Diverse Bridging Motifs within Actinide Borosulfates and Establishing an Unconventional Structural Hierarchy . Inorganic Chemistry . 61 . 40 . en . 15953–15960 . 10.1021/acs.inorgchem.2c02144 . 36047685 . 251977898 . 0020-1669.