Borate phosphate explained

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

There are also organic esters of both borate and phosphate, e.g. NADH-borate.[1]

Production

In the high temperature method, ingredients are heated together at atmospheric pressure. Products are anhydrous, and production or borophosphates is likely.[2]

The boron flux method involves dissolving ingredients such as an ammonium phosphate and metal carbonate in an excess of molten boric acid.

Use

Borate phosphates are of research interest for their optical, electrooptical or magnetic properties.

List

chemmwcrystal systemspace groupunit cell Åvolumedensitycommentreferences
Be3(BO3)(PO4)hexagonalSHG[3]
α-Mg3[BPO<sub>7</sub>]orthorhombicImmma=8·495, b=4·886, c=12·565 Z=4[4]
Mg3[BPO<sub>7</sub>]monoclinicCm
Mg3[BPO<sub>7</sub>]hexagonalP6_2m
LüneburgiteMg3[B<sub>2</sub>(OH)<sub>6</sub>](PO4)2 · 6H2Otriclinic2.05Biaxial (-) nα = 1.520 – 1.522 nβ = 1.540 – 1.541 nγ = 1.545 – 1.548

2V 52° to 60°

Max birefringence δ = 0.025 – 0.026

[5] [6]
Ca3[BPO<sub>7</sub>]monoclinica=8.602 b=4.891 c=12.806 β=102.30
SeamaniteMn2+3[B(OH)<sub>4</sub>](PO4)(OH)2orthorhombicPbnma = 7.81 Å, b = 15.11 Å, c = 6.69 Å Z=4789.483.08Biaxial (+) nα = 1.640 nβ = 1.663 nγ = 1.6652V 40°

Max birefringence δ = 0.025

[7] [8]
Laptevite-(Ce)Ca6(Fe2+,Mn2+)Y3REE7(SiO4)3(PO4)(B3Si3O18)(BO3)F11trigonalR3ma = 10.804, c = 27.726 Z=32802.64.61Uniaxial (-) nω = 1.741 nε = 1.720Max birefringence δ = 0.021[9]
(CoPO4)4, B5O6(OH)4N(CH3)4(CH3NH3)1036.10orthorhombicI222a=6.7601 b=7.5422 c=34.822 Z=21775.41.938red[10]
Co3[BPO<sub>7</sub>]monoclinicCma=9.774, b=12.688, c=4.9057, β=119.749°; Z=4528.2purple
α-Zn3[BPO<sub>7</sub>]349.89orthorhombica=8.438 b=4.884 c=12.558
α-Zn3[BPO<sub>7</sub>]349.89monoclinicCma=9.725 b=12.720 c=4.874 β=119.80 Z=4[11]
β-Zn3[BPO<sub>7</sub>]349.89hexagonalP-6a=8.4624 c=13.0690 Z=6810.514.301colourless[12]
α-Sr3[BPO<sub>7</sub>]orthorhombica=9.0561, b=9.7984, c=13.9531[13]
Sr10[(PO<sub>4</sub>)<sub>5.5</sub>(BO<sub>4</sub>)<sub>0.5</sub>](BO2)P3_a=9.7973, c=7.3056, Z=1607.29[14]
SrCo2(BO3)(PO4)359.26monoclinicP21/ca=6.485 b=9.270 c=10.066 β=111.14 Z=4548.74.349red[15]
ByzantieviteBa5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO<sub>4</sub>, SiO<sub>4</sub>)]4(BO3)9O22[(OH),F]43(H2O)1.5trigonalR3a = 9.1202, c = 102.1457,357.94.10Uniaxial (-) nω = 1.940 nε = 1.860Max birefringence δ = 0.080

16 different layers in structure

[16] [17]
RhabdoboriteMg12(V5+,Mo6+,W6+)1 · 5O6 (x < 1)hexagonalP63a = 10.6314, c = 4.5661446.95[18]
CsNa2Y2(BO3)(PO4)2605.46orthorhombicCmcma=6.9491 b=14.907 c=10.6201 Z=41100.23.655colourless[19]
CsZn4(BO3)(PO4)2679.30orthorhombicPbcaa=14.49 b=10.02 c=16.45 Z=823883.779colourless[20]
Ba3(BO3)(PO4)hexagonalP63mca=5.4898, c=14.7551, Z=2[21]
Ba3(BO3)(PO4)monoclinicP2/ma = 11.7947, b = 9.6135, c = 12.9548, β= 111.25°1369.08[22]
Ba11B26O44(PO4)2(OH)6monoclinicP21/ca=6.891, b=13.629, c=25.851, β=90.04°[23]
Ba3(ZnB5O10)PO4786.41orthorhombicPnm21a = 10.399 b = 7.064 c = 8.204 Z=2602.64.334[24]
La7O6(BO3)(PO4)2monoclinica=7.019 b=17.915 c=12.653 β=97.521577.27[25]
Pr7O6(BO3)(PO4)2monoclinicP121/n1a=6.8939 b=17.662 c=12.442 β=97.24 Z=41502.9green[26]
Nd7O6(BO3)(PO4)2monoclinica=6.862 b=17.591 c=12.375 β=97.181482.12
Sm7O6(BO3)(PO4)2monoclinicP121/n1a=6.778 b=17.396 c=12.218 β=96.96 Z=41430.0yellow
CsNa2Sm2(BO3)(PO4)2728.34orthorhombicCmcma=7.0631 b=15.288 c=10.725 Z=41158.14.177colourless[27]
CsNa2Ho2(BO3)(PO4)2[28]
CsNa2Er2(BO3)(PO4)2
CsNa2Tm2(BO3)(PO4)2
Gd7O6(BO3)(PO4)2monoclinica=6.704 b=17.299 c=12.100 β=96.941393.11
Dy7O6(BO3)(PO4)2monoclinica=6.623 b=17.172 c=11.960 β=96.761350.84
K3Yb[OB(OH)<sub>2</sub>]2[HOPO<sub>3</sub>]2R3_a=5.6809, c=36.594 Z=31022.8[29]
CsNa2Yb2(BO3)(PO4)2
K3Lu[OB(OH)<sub>2</sub>]2[HOPO<sub>3</sub>]2R3_a=5.6668, c=36.692 Z=31020.4
CsNa2Lu2(BO3)(PO4)2777.58orthorhombicCmcma = 6.8750 b = 14.6919 c = 10.55811066.444.843
Pb4O(BO3)(PO4)998.54monoclinicP21/ca=10.202 b=7.005 c=12.92 β=113.057 Z=4849.67.807colourless[30]
LiPb4(BO3)(PO4)21084.85orthorhombicPbcaa=12.613 b=6.551 c=25.63 Z=820956.875colourless[31]
Bi4O3(BO3)(PO4)1037.70orthorhombicPbcaa=5.536 b=14.10 c=22.62 Z=817667.807colourless
Th2[BO<sub>4</sub>][PO<sub>4</sub>]monoclinicP21/ca=8.4665, b=7.9552, c=8.2297, β= 103.746° Z = 4[32]
Ba5[(UO<sub>2</sub>)(PO<sub>4</sub>)<sub>3</sub>(B<sub>5</sub>O<sub>9</sub>)]·nH2Ointerlocking nanotubes; absorbs water from air[33]
U2[BO<sub>4</sub>][PO<sub>4</sub>]645.84monoclinicP21/ca = 8.546, b = 7.753, c = 8.163 β = 102.52° Z=4528.08.12generated at 12.5 GPa + 1000 °C; emerald green[34]
[Sr<sub>8</sub>(PO<sub>4</sub>)<sub>2</sub>][(UO<sub>2</sub>)(PO<sub>4</sub>)<sub>2</sub>(B<sub>5</sub>O<sub>9</sub>)<sub>2</sub>]1746.97monoclinicP21/na = 6.5014, b =22.4302, c =9.7964 β = 90.241° Z=21428.574.061orange[35]

Notes and References

  1. Kim . Danny H. . Marbois . Beth N. . Faull . Kym F. . Eckhert . Curtis D. . Esterification of borate with NAD+ and NADH as studied by electrospray ionization mass spectrometry and11B NMR spectroscopy . Journal of Mass Spectrometry . June 2003 . 38 . 6 . 632–640 . 10.1002/jms.476. 12827632 . 2003JMSp...38..632K .
  2. Yilmaz. Aysen. Bu. Xianhui. Kizilyalli. Meral. Kniep. Rudiger. Stucky. Galen D.. February 2001. Cobalt Borate Phosphate, Co3[BPO7], Synthesis and Characterization]. Journal of Solid State Chemistry. en. 156. 2. 281–285. 10.1006/jssc.2000.8963. 2001JSSCh.156..281Y.
  3. He. Zhangzhen. Moriyama. Hiroshi. 2003. A Model of New VUV NLO Materials Based on Borate: A Novel Noncentrosymmetric Borophosphate Compound Be 3 BPO 7. MRS Proceedings. en. 788. L8.23. 10.1557/PROC-788-L8.23. 0272-9172.
  4. Gözel. G.. Baykal. A.. Kizilyalli. M.. Kniep. R.. December 1998. Solid-State Synthesis, X-ray Powder Investigation and IR Study of α-Mg3[BPO7]]. Journal of the European Ceramic Society. en. 18. 14. 2241–2246. 10.1016/S0955-2219(98)00152-6.
  5. Web site: Lüneburgite. 2020-12-15. www.mindat.org.
  6. Korybska-Sadło. Iwona. Sitarz. Maciej. Król. Magdalena. Gunia. Piotr. 2016-10-20. Vibrational spectroscopic characterization of the magnesium borate-phosphate mineral lüneburgite. Spectroscopy Letters. en. 49. 9. 606–612. 10.1080/00387010.2016.1236819. 2016SpecL..49..606K. 99999165. 0038-7010.
  7. Web site: Seamanite. 2020-12-15. www.mindat.org.
  8. Ewald. Bastian. Huang. Ya-Xi. Kniep. Rüdiger. August 2007. Structural Chemistry of Borophosphates, Metalloborophosphates, and Related Compounds. Zeitschrift für anorganische und allgemeine Chemie. de. 633. 10. 1517–1540. 10.1002/zaac.200700232.
  9. Web site: Laptevite-(Ce). 2020-12-15. www.mindat.org.
  10. Lin. Zhuojia. Wragg. David S.. Lightfoot. Philip. Morris. Russell E.. 2009. A novel non-centrosymmetric metallophosphate-borate compound via ionothermal synthesis. Dalton Transactions. en. 27. 5287–9. 10.1039/b904450g. 19565080. 1477-9226.
  11. Bluhm. K.. Park. C. H.. 1997-01-01. Die Synthese und Kristallstruktur des Borat-Phosphats: α -Zn3(BO3)(PO4) / Synthesis and Crystal Structure of the Borate-Phosphate: α-Zn3(BO3)(PO4). Zeitschrift für Naturforschung B. 52. 1. 102–106. 10.1515/znb-1997-0120. 100783759. 1865-7117.
  12. Zhang. Erpan. Zhao. Sangen. Zhang. Jianxiu. Fu. Peizhen. Yao. Jiyong. 2011-01-15. The β-modification of trizinc borate phosphate, Zn 3 (BO 3)(PO 4). Acta Crystallographica Section E. 67. 1. i3. 10.1107/S1600536810051871. 1600-5368. 3050272. 21522511. 2011AcCrE..67I...3Z .
  13. Web site: Tekin. Berna. August 2007. Bazi Metal İçeren Boratli, Fosfatli ve Borfosfatli Bi̇leşi̇kleri̇n Sentezi̇ ve Yapisal Karakteri̇zasyonu.
  14. Chen. Shuang. Hoffmann. Stefan. Carrillo-Cabrera. Wilder. Akselrud. Lev G.. Prots. Yurii. Schwarz. Ulrich. Zhao. Jing-Tai. Kniep. Rüdiger. March 2010. Sr10[(PO4)5.5(BO4)0.5](BO2): Growth and crystal structure of a strontium phosphate orthoborate metaborate closely related to the apatite-type crystal structure]. Journal of Solid State Chemistry. en. 183. 3. 658–661. 10.1016/j.jssc.2009.12.026. 2010JSSCh.183..658C.
  15. Gou. Wenbin. He. Zhangzhen. Yang. Ming. Zhang. Weilong. Cheng. Wendan. 2013-03-04. Synthesis and Magnetic Properties of a New Borophosphate SrCo 2 BPO 7 with a Four-Column Ribbon Structure. Inorganic Chemistry. en. 52. 5. 2492–2496. 10.1021/ic3023979. 23406089. 0020-1669.
  16. Web site: Byzantievite. 2020-12-15. www.mindat.org.
  17. Sokolova. E.. Hawthorne. F. C.. Pautov. L. A.. Agakhanov. A. A.. April 2010. Byzantievite, Ba 5 (Ca, REE,Y) 22 (Ti,Nb) 18 (SiO 4) 4 [(PO 4),(SiO 4)] 4 (BO 3) 9 O 21 [(OH),F] 43 (H 2 O) 1.5 : the crystal structure and crystal chemistry of the only known mineral with the oxyanions (BO 3), (SiO 4) and (PO 4)]. Mineralogical Magazine. en. 74. 2. 285–308. 10.1180/minmag.2010.074.2.285. 2010MinM...74..285S. 95182192. 0026-461X.
  18. Web site: Rhabdoborite-(V). 2020-12-15. www.mindat.org.
  19. Zhao. Dan. Xue. Yali. Zhang. Ruijuan. Fan. Yanping. Liu. Baozhong. Li. Yanan. Zhang. Shirui. 2020. Design, synthesis, crystal structure and luminescent properties introduced by Eu 3+ of a new type of rare-earth borophosphate CsNa 2 REE 2 (BO 3)(PO 4) 2 (REE = Y, Gd). Dalton Transactions. en. 49. 29. 10104–10113. 10.1039/D0DT00389A. 32662492. 220519447. 1477-9226.
  20. Guo. Fengjiao. Hu. Cong. Wang. Ying. Han. Jian. Yang. Zhihua. Pan. Shilie. 2018. Insights of BO 3 –PO 4 replacement for the design and synthesis of a new borate–phosphate with unique 1∞[Zn 4 BO 11 ] chains and two new phosphates]. Inorganic Chemistry Frontiers. en. 5. 2. 327–334. 10.1039/C7QI00548B. 2052-1553.
  21. Ma. H.W.. Liang. J.K.. Wu. L.. Liu. G.Y.. Rao. G.H.. Chen. X.L.. October 2004. Ab initio structure determination of new compound Ba3(BO3)(PO4). Journal of Solid State Chemistry. en. 177. 10. 3454–3459. 10.1016/j.jssc.2003.12.027. 2004JSSCh.177.3454M.
  22. Web site: Gözel. Güller. 1993. Preparation and structural investigation of alkaline-earth metal borophosphates – Tez Arşivi. 2021-03-01. tezarsivi.com.
  23. Heyward. Carla. McMillen. Colin D.. Kolis. Joseph. July 2013. Hydrothermal synthesis and structural analysis of new mixed oxyanion borates: Ba11B26O44(PO4)2(OH)6, Li9BaB15O27(CO3) and Ba3Si2B6O16. Journal of Solid State Chemistry. en. 203. 166–173. 10.1016/j.jssc.2013.04.022. 2013JSSCh.203..166H.
  24. Yu. Hongwei. Zhang. Weiguo. Young. Joshua. Rondinelli. James M.. Halasyamani. P. Shiv. December 2015. Design and Synthesis of the Beryllium-Free Deep-Ultraviolet Nonlinear Optical Material Ba 3 (ZnB 5 O 10)PO 4. Advanced Materials. en. 27. 45. 7380–7385. 10.1002/adma.201503951. 26459262. 2015AdM....27.7380Y . 35637169 .
  25. Shi. Ying. Liang. Jingkui. Zhang. Hao. Yang. Jinling. Zhuang. Weidong. Rao. Guanghui. February 1997. X-Ray Powder Diffraction and Vibrational Spectra Studies of Rare Earth Borophosphates,Ln7O6(BO3)(PO4)2(Ln=La, Nd, Gd, and Dy). Journal of Solid State Chemistry. en. 129. 1. 45–52. 10.1006/jssc.1996.7227. 1997JSSCh.129...45S.
  26. Ewald. B.. Prots. Yu.. Kniep. R.. April 2004. Refinement of the crystal structures of praseodymium- and samariumoxoborate- bis(oxophosphate)-oxide, Ln7O6[BO3][PO4]2, (Ln = Pr, Sm). Zeitschrift für Kristallographie – New Crystal Structures. 219. 1–4. 233–235. 10.1524/ncrs.2004.219.14.233. 96530323. 2197-4578. free.
  27. Zhao. Dan. Shi. Lin-Ying. Zhang. Rui-Juan. Xue. Ya-Li. 2020-12-01. Synthesis, crystal structure and luminescence properties of a new samarium borate phosphate, CsNa 2 Sm 2 (BO 3)(PO 4) 2. Acta Crystallographica Section C: Structural Chemistry. 76. 12. 1068–1075. 10.1107/S2053229620014576. 33273144. 227283126. 2053-2296.
  28. Zhao. Dan. Xue. Ya-Li. Fan. Yun-Chang. Zhang. Rui-Juan. Zhang. Shi-Rui. June 2021. A new series of rare-earth borate-phosphate family CsNa2Ln2(BO3)(PO4)2 (Ln = Ho, Er, Tm, Yb): Tunnel structure, upconversion luminescence and optical thermometry properties. Journal of Alloys and Compounds. en. 866. 158801. 10.1016/j.jallcom.2021.158801. 233561777.
  29. Zhou. Yan. Hoffmann. Stefan. Huang. Ya-Xi. Prots. Yurii. Schnelle. Walter. Menezes. Prashanth W.. Carrillo-Cabrera. Wilder. Sichelschmidt. Jörg. Mi. Jin-Xiao. Kniep. Rüdiger. June 2011. K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu): Layered rare-earth dihydrogen borate monohydrogen phosphates]. Journal of Solid State Chemistry. en. 184. 6. 1517–1522. 10.1016/j.jssc.2011.04.023. 2011JSSCh.184.1517Z.
  30. Wang. Ying. Pan. Shilie. Huang. Shengshi. Dong. Lingyun. Zhang. Min. Han. Shujuan. Wang. Xian. 2014. Structural insights for the design of new borate–phosphates: synthesis, crystal structure and optical properties of Pb 4 O(BO 3)(PO 4) and Bi 4 O 3 (BO 3)(PO 4). Dalton Trans.. en. 43. 34. 12886–12893. 10.1039/C4DT01199F. 25020047. 1477-9226.
  31. Huang. Shengshi. Yu. Hongwei. Han. Jian. Pan. Shilie. Jing. Qun. Wang. Ying. Dong. Lingyun. Wu. Hongping. Yang. Zhihua. Wang. Xian. August 2014. The Effect of the Ratio of [M/(B+P)] on the Configuration of Anionic Groups: Synthesis of the Borate-Phosphate LiPb 4 (BO 3)(PO 4) 2]. European Journal of Inorganic Chemistry. en. 2014. 22. 3467–3473. 10.1002/ejic.201402389.
  32. Lipp. C.. Burns. P. C.. 2011-10-01. Th2[BO4][PO4]

    A RARE EXAMPLE OF AN ACTINIDE BORATE-PHOSPHATE]

    . The Canadian Mineralogist. en. 49. 5. 1211–1220. 10.3749/canmin.49.5.1211. 2011CaMin..49.1211L . 0008-4476.
  33. Wu. Shijun. Wang. Shuao. Diwu. Juan. Depmeier. Wulf. Malcherek. Thomas. Alekseev. Evgeny V.. Albrecht-Schmitt. Thomas E.. 2012. Complex clover cross-sectioned nanotubules exist in the structure of the first uranium borate phosphate. Chemical Communications. en. 48. 29. 3479–81. 10.1039/c2cc17517g. 22267020. 1359-7345.
  34. Hinteregger. Ernst. Wurst. Klaus. Perfler. Lukas. Kraus. Florian. Huppertz. Hubert. 2013-10-14. High-Pressure Synthesis and Characterization of the Actinide Borate Phosphate U 2 [BO 4 ][PO 4 ]: High-Pressure Synthesis and Characterization of U 2 [BO 4 ][PO 4 ]. European Journal of Inorganic Chemistry. en. 2013. 30. 5247–5252. 10.1002/ejic.201300662. 3939824. 24611029.
  35. Web site: Hao. Yucheng. 2017. New Insight into the Crystal Chemistry of Uranium and Thorium Borates, Borophosphates and Borate-phosphates. 109.