Blood transfusion explained

Blood transfusion
Icd9:99.0

Blood transfusion is the process of transferring blood products into a person's circulation intravenously.[1] Transfusions are used for various medical conditions to replace lost components of the blood. Early transfusions used whole blood, but modern medical practice commonly uses only components of the blood, such as red blood cells, plasma, platelets, and other clotting factors. White blood cells are transfused only in very rare circumstances, since granulocyte transfusion has limited applications. Whole blood has come back into use in the setting of trauma.[2]

Red blood cells (RBC) contain hemoglobin and supply the cells of the body with oxygen. White blood cells are not commonly used during transfusions, but they are part of the immune system and also fight infections. Plasma is the "yellowish" liquid part of blood, which acts as a buffer and contains proteins and other important substances needed for the body's overall health. Platelets are involved in blood clotting, preventing the body from bleeding. Before these components were known, doctors believed that blood was homogeneous. Because of this scientific misunderstanding, many patients died because of incompatible blood transferred to them.

Medical uses

Red cell transfusion

See main article: Packed red blood cells. Historically, red blood cell transfusion was considered when the hemoglobin level fell below 100g/L or hematocrit fell below 30%.[3] [4] Because each unit of blood given carries risks, a trigger level lower than that, at 70 to 80g/L, is now usually used, as it has been shown to have better patient outcomes.[5] [6] The administration of a single unit of blood is the standard for hospitalized people who are not bleeding, with this treatment followed with re-assessment and consideration of symptoms and hemoglobin concentration. Patients with poor oxygen saturation may need more blood. The advisory caution to use blood transfusion only with more severe anemia is in part due to evidence that outcomes are worsened if larger amounts are given.[7] One may consider transfusion for people with symptoms of cardiovascular disease such as chest pain or shortness of breath. In cases where patients have low levels of hemoglobin due to iron deficiency, but are cardiovascularly stable, oral or parenteral iron is a preferred option based on both efficacy and safety.[8] Other blood products are given where appropriate, e.g., fresh frozen plasma to treat clotting deficiencies and platelets to treat or prevent bleeding in thrombocytopenic patients.

Procedure

Before a blood transfusion is given, there are many steps taken to ensure quality of the blood products, compatibility, and safety to the recipient. In 2012, a national blood policy was in place in 70% of countries and 69% of countries had specific legislation that covers the safety and quality of blood transfusion.[9]

Blood donation

The source of blood to be transfused can either be the potential recipient (autologous transfusion), or someone else (allogeneic or homologous transfusion). The latter is much more common than the former. Using another's blood must first start with donation of blood. Blood is most commonly donated as whole blood obtained intravenously and mixed with an anticoagulant. In first-world countries, donations are usually anonymous to the recipient, but products in a blood bank are always individually traceable through the whole cycle of donation, testing, separation into components, storage, and administration to the recipient.[10] This enables management and investigation of any suspected transfusion related disease transmission or transfusion reaction. Developing countries rely heavily on replacement and remunerated donors rather than voluntary nonremunerated donors due to concerns regarding donation- and transfusion-transmitted infection as well as local and cultural beliefs.[11]

It is unclear whether applying alcohol swab alone or alcohol swab followed by antiseptic is able to reduce contamination of donor's blood.[12]

Studies show that the main motivators to blood donation tend to be prosocial (e.g., altruism, selflessness, charity), while the main deterrents include fear, distrust,[13] [14] or perceived racial discrimination in historic contexts.

Processing and testing

Donated blood is usually subjected to processing after it is collected, to make it suitable for use in specific patient populations. Collected blood is then separated into blood components by centrifugation: red blood cells, plasma, and platelets. Plasma can be further processed to manufacture albumin protein, clotting factor concentrates, cryoprecipitate, fibrinogen concentrate, and immunoglobulins (antibodies). Red cells, plasma and platelets can also be donated individually via a more complex process called apheresis.

Compatibility testing

See main article: Blood compatibility testing. Before a recipient receives a transfusion, compatibility testing between donor and recipient blood must be done. The first step before a transfusion is given is to type and screen the recipient's blood. Typing of recipient's blood determines the ABO and Rh status. The sample is then screened for any alloantibodies that may react with donor blood.[28] It takes about 45 minutes to complete (depending on the method used). The blood bank scientist also checks for special requirements of the patient (e.g. need for washed, irradiated or CMV negative blood) and the history of the patient to see if they have previously identified antibodies and any other serological anomalies.

A positive screen warrants an antibody panel/investigation to determine if it is clinically significant. An antibody panel consists of commercially prepared group O red cell suspensions from donors that have been phenotyped for antigens that correspond to commonly encountered and clinically significant alloantibodies. Donor cells may have homozygous (e.g. K+k+), heterozygous (K+k-) expression or no expression of various antigens (K−k−). The phenotypes of all the donor cells being tested are shown in a chart. The patient's serum is tested against the various donor cells using an indirect Coombs test. Based on the reactions of the patient's serum against the donor cells, a pattern will emerge to confirm the presence of one or more antibodies. Not all antibodies are clinically significant (i.e. cause transfusion reactions, HDN, etc.). Once the patient has developed a clinically significant antibody it is vital that the patient receive antigen-negative red blood cells to prevent future transfusion reactions.[29]

If there is no antibody present, an immediate spin crossmatch may be performed where the recipient serum and donor rbc are incubated. In the immediate spin method, two drops of patient serum are tested against a drop of 3–5% suspension of donor cells in a test tube and spun in a serofuge. Agglutination or hemolysis (i.e., positive Coombs test) in the test tube is a positive reaction. If the crossmatch is positive, then further investigation is needed. Patients with no history of red cell antibodies may qualify for computer-assisted crossmatch, which does not involve combining patient serum with donor cells.

If an antibody is suspected, potential donor units must first be screened for the corresponding antigen by phenotyping them. Antigen negative units are then tested against the patient plasma using an antiglobulin/indirect crossmatch technique at 37 degrees Celsius to enhance reactivity and make the test easier to read.

In urgent cases where crossmatching cannot be completed, and the risk of dropping hemoglobin outweighs the risk of transfusing uncrossmatched blood, O-negative blood is used, followed by crossmatch as soon as possible. O-negative is also used for children and women of childbearing age. It is preferable for the laboratory to obtain a pre-transfusion sample in these cases so a type and screen can be performed to determine the actual blood group of the patient and to check for alloantibodies.

Compatibility of ABO and Rh system for Red Cell (Erythrocyte) Transfusion

This chart shows possible matches in blood transfusion between donor and receiver using ABO and Rh system. The symbol indicates compatibility.

Adverse effects

In the same way that the safety of pharmaceutical products is overseen by pharmacovigilance, the safety of blood and blood products is overseen by haemovigilance. This is defined by the World Health Organization (WHO) as a system "...to identify and prevent occurrence or recurrence of transfusion related unwanted events, to increase the safety, efficacy and efficiency of blood transfusion, covering all activities of the transfusion chain from donor to recipient." The system should include monitoring, identification, reporting, investigation and analysis of adverse events, near-misses, and reactions related to transfusion and manufacturing.[30] In the UK this data is collected by an independent organisation called SHOT (Serious Hazards Of Transfusion).[31] Haemovigilance systems have been established in many countries with the objective of ensuring the safety of blood for transfusion, but their organisational set-up and operating principles can vary.[32]

Transfusions of blood products are associated with several complications, many of which can be grouped as immunological or infectious. There is controversy on potential quality degradation during storage.[33]

Immunologic reaction

Infection

The use of greater amount of red blood cells has been suggested to increase the risk of infections, not only transfusion-transmitted infections, but also due to a phenomenon known as transfusion-related immunomodulation (TRIM). TRIM may be caused by macrophages and their byproducts.[41] In those who were given red blood cells only with significant anemia ("restrictive" strategy), serious infection rates were 10.6% while in those who were given red blood at milder levels of anemia ("liberal" strategy), serious infection rates were 12.7%.[42]

On rare occasions, blood products are contaminated with bacteria. This can result in a life-threatening infection known as transfusion-transmitted bacterial infection. The risk of severe bacterial infection is estimated,, at about 1 in 2,500 platelet transfusions, and 1 in 2,000,000 red blood cell transfusions.[43] Blood product contamination, while rare, is still more common than actual infection. The reason platelets are more often contaminated than other blood products is that they are stored at room temperature for short periods of time. Contamination is also more common with longer duration of storage, especially if that means more than 5 days. Sources of contaminants include the donor's blood, donor's skin, phlebotomist's skin, and containers. Contaminating organisms vary greatly, and include skin flora, gut flora, and environmental organisms. There are many strategies in place at blood donation centers and laboratories to reduce the risk of contamination. A definite diagnosis of transfusion-transmitted bacterial infection includes the identification of a positive culture in the recipient (without an alternative diagnosis) as well as the identification of the same organism in the donor blood.

Since the advent of HIV testing of donor blood in the mid/later 1980s, ex. 1985's ELISA, the transmission of HIV during transfusion has dropped dramatically. Prior testing of donor blood only included testing for antibodies to HIV. However, because of latent infection (the "window period" in which an individual is infectious, but has not had time to develop antibodies) many cases of HIV seropositive blood were missed. The development of a nucleic acid test for the HIV-1 RNA has dramatically lowered the rate of donor blood seropositivity to about 1 in 3 million units. As transmittance of HIV does not necessarily mean HIV infection, the latter could still occur at an even lower rate.

The transmission of hepatitis C via transfusion currently stands at a rate of about 1 in 2 million units. As with HIV, this low rate has been attributed to the ability to screen for both antibodies as well as viral RNA nucleic acid testing in donor blood.

Other rare transmissible infections include hepatitis B, syphilis, Chagas disease, cytomegalovirus infections (in immunocompromised recipients), HTLV, and Babesia.

Comparison table

colspan=5
+ =Occasionally present   ++ =Frequently present
Bacterial contamination
Appearance of symptoms during or after transfusionUsually toward end.
5–10% appear up to 2 hours after.
Early (after 10–15 ml) Early (after 50–100 ml) Up to 8 hours after transfusion
Fever+ ++ ++ ++
Chills++ ++ ++ +++
Cold++ - + -
Discomfort++ - - -
Rigors+ - - -
Headache+ - + -
Nausea and/or vomiting+ - ++ -
Dyspnea+ ++ ++ -
Cyanosis- ++ ++ -
Hypotension / circulatory shock- ++ ++ ++
Disseminated intravascular coagulation- - ++ ++
Hemoglobinuria- - ++ +
Renal failure- - ++ ++
Back pain- - ++ -

Inefficacy

Transfusion inefficacy or insufficient efficacy of a given unit(s) of blood product, while not itself a "complication" per se, can nonetheless indirectly lead to complications – in addition to causing a transfusion to fully or partly fail to achieve its clinical purpose. This can be especially significant for certain patient groups such as critical-care or neonatals.

For red blood cells (RBC), by far the most commonly transfused product, poor transfusion efficacy can result from units damaged by the so-called storage lesion – a range of biochemical and biomechanical changes that occur during storage. With red cells, this can decrease viability and ability for tissue oxygenation.[44] Although some of the biochemical changes are reversible after the blood is transfused,[45] the biomechanical changes are less so,[46] and rejuvenation products are not yet able to adequately reverse this phenomenon.[47] There has been controversy about whether a given product unit's age is a factor in transfusion efficacy, specifically about whether "older" blood directly or indirectly increases risks of complications.[48] [49] Studies have not been consistent on answering this question,[50] with some showing that older blood is indeed less effective but with others showing no such difference;[51] [52] these developments are being closely followed by hospital blood bankers – who are the physicians, typically pathologists, who collect and manage inventories of transfusable blood units.

Certain regulatory measures are in place to minimize RBC storage lesion – including a maximum shelf life (currently 42 days), a maximum auto-hemolysis threshold (currently 1% in the US, 0.8% in Europe), and a minimum level of post-transfusion RBC survival in vivo (currently 75% after 24 hours).[53] However, all of these criteria are applied in a universal manner that does not account for differences among units of product.[54] For example, testing for the post-transfusion RBC survival in vivo is done on a sample of healthy volunteers, and then compliance is presumed for all RBC units based on universal (GMP) processing standards (RBC survival by itself does not guarantee efficacy, but it is a necessary prerequisite for cell function, and hence serves as a regulatory proxy). Opinions vary as to the "best" way to determine transfusion efficacy in a patient in vivo.[55] In general, there are not yet any in vitro tests to assess quality or predict efficacy for specific units of RBC blood product prior to their transfusion, though there is exploration of potentially relevant tests based on RBC membrane properties such as erythrocyte deformability[56] and erythrocyte fragility (mechanical).[57]

Physicians have adopted a so-called "restrictive protocol" – whereby transfusion is held to a minimum – in part because of the noted uncertainties surrounding storage lesion, in addition to the very high direct and indirect costs of transfusions.[58] [59] [60] However, the restrictive protocol is not an option with some especially vulnerable patients who may require the best possible efforts to rapidly restore tissue oxygenation.

Although transfusions of platelets are far less numerous (relative to RBC), platelet storage lesion and resulting efficacy loss is also a concern.[61]

Other

Frequency of use

Globally around 85 million units of red blood cells are transfused in a given year. The global demand is much higher and there is an unmet need for safe blood for transfusion in many low- and middle-income countries.[73]

In the United States, blood transfusions were performed nearly 3 million times during hospitalizations in 2011, making it the most common procedure performed. The rate of hospitalizations with a blood transfusion nearly doubled from 1997, from a rate of 40 stays to 95 stays per 10,000 population. It was the most common procedure performed for patients 45 years of age and older in 2011, and among the top five most common for patients between the ages of 1 and 44 years.[74]

According to the New York Times: "Changes in medicine have eliminated the need for millions of blood transfusions, which is good news for patients getting procedures like coronary bypasses and other procedures that once required a lot of blood." And, "Blood bank revenue is falling, and the decline may reach $1.5 billion a year this year [2014] from a high of $5 billion in 2008." In 2014, the Red Cross was predicting job losses as high as 12,000 within the next three to five years, roughly a quarter of the total in the industry.[75] As of 2019, the trend of declining transfusions appeared to be stabilizing, with 10,852,000 RBC units transfused in the United States.[76]

History

Beginning with William Harvey's experiments on the circulation of blood, recorded research into blood transfusion began in the 17th century, with successful experiments in transfusion between animals. However, successive attempts by physicians to transfuse animal blood into humans gave variable, often fatal, results.[77]

Pope Innocent VIII is sometimes said to have been given "the world's first blood transfusion" by his Italian-Jewish physician Giacomo di San Genesio, who had him drink (by mouth) the blood of three 10-year-old boys. The boys consequently died, as did the Pope himself. However, the evidence for this story is unreliable and considered a possible anti-Jewish blood libel.[78]

Early attempts

Animal blood

Working at the Royal Society in the 1660s, the physician Richard Lower began examining the effects of changes in blood volume on circulatory function and developed methods for cross-circulatory study in animals, obviating clotting by closed arteriovenous connections. The new instruments he was able to devise enabled him to perform the first reliably documented successful transfusion of blood in front of his distinguished colleagues from the Royal Society.

According to Lower's account, "...towards the end of February 1665 [I] selected one dog of medium size, opened its jugular vein, and drew off blood, until its strength was nearly gone. Then, to make up for the great loss of this dog by the blood of a second, I introduced blood from the cervical artery of a fairly large mastiff, which had been fastened alongside the first, until this latter animal showed ... it was overfilled ... by the inflowing blood." After he "sewed up the jugular veins", the animal recovered "with no sign of discomfort or of displeasure".

Lower had performed the first blood transfusion between animals. He was then "requested by the Honorable [Robert] Boyle ... to acquaint the Royal Society with the procedure for the whole experiment", which he did in December 1665 in the Society's Philosophical Transactions.[79]

The first blood transfusion from animal to human was administered by Dr. Jean-Baptiste Denys, eminent physician to King Louis XIV of France, on June 15, 1667.[80] He transfused the blood of a sheep into a 15-year-old boy, who survived the transfusion.[81] Denys performed another transfusion into a labourer, who also survived. Both instances were likely due to the small amount of blood that was actually transfused into these people. This allowed them to withstand the allergic reaction.

Denys's third patient to undergo a blood transfusion was Swedish Baron Gustaf Bonde. He received two transfusions. After the second transfusion Bonde died.[82] In the winter of 1667, Denys performed several transfusions on Antoine Mauroy with calf's blood. On the third account Mauroy died.[83]

Six months later in London, Lower performed the first human transfusion of animal blood in Britain, where he "superintended the introduction in [a patient's] arm at various times of some ounces of sheep's blood at a meeting of the Royal Society, and without any inconvenience to him." The recipient was Arthur Coga, "the subject of a harmless form of insanity." Sheep's blood was used because of speculation about the value of blood exchange between species; it had been suggested that blood from a gentle lamb might quiet the tempestuous spirit of an agitated person and that the shy might be made outgoing by blood from more sociable creatures. Coga received 20 shillings to participate in the experiment.[84]

Lower went on to pioneer new devices for the precise control of blood flow and the transfusion of blood; his designs were substantially the same as modern syringes and catheters. Shortly after, Lower moved to London, where his growing practice soon led him to abandon research.[85]

These early experiments with animal blood provoked a heated controversy in Britain and France. Finally, in 1668, the Royal Society and the French government both banned the procedure. The Vatican condemned these experiments in 1670. Blood transfusions fell into obscurity for the next 150 years.

Human blood

The science of blood transfusion dates to the first decade of the 20th century, with the discovery of distinct blood types leading to the practice of mixing some blood from the donor and the receiver before the transfusion (an early form of cross-matching).

In the early 19th century, British obstetrician Dr. James Blundell made efforts to treat hemorrhage by transfusion of human blood using a syringe. In 1818, after experiments with animals, he performed the first successful transfusion of human blood to treat postpartum hemorrhage. Blundell used the patient's husband as a donor, and extracted four ounces of blood from his arm to transfuse into his wife. During the years 1825 and 1830, Blundell performed 10 transfusions, five of which were beneficial, and published his results. He also invented a number of instruments for the transfusion of blood.[86] He made a substantial amount of money from this endeavour, roughly $2 million ($50 million real dollars).[87]

In 1840, at St George's Hospital Medical School in London, Samuel Armstrong Lane, aided by Blundell, performed the first successful whole blood transfusion to treat haemophilia.

However, early transfusions were risky and many resulted in the death of the patient. By the late 19th century, blood transfusion was regarded as a risky and dubious procedure, and was largely shunned by the medical establishment.

Work to emulate James Blundell continued in Edinburgh. In 1845 the Edinburgh Journal described the successful transfusion of blood to a woman with severe uterine bleeding. Subsequent transfusions were successful with patients of Professor James Young Simpson, after whom the Simpson Memorial Maternity Pavilion in Edinburgh was named.[88]

Various isolated reports of successful transfusions emerged towards the end of the 19th century.[89] The largest series of early successful transfusions took place at the Edinburgh Royal Infirmary between 1885 and 1892. Edinburgh later became the home of the first blood donation and blood transfusion services.

20th century

Only in 1901, when the Austrian Karl Landsteiner discovered three human blood groups (O, A, and B), did blood transfusion achieve a scientific basis and become safer.

Landsteiner discovered that adverse effects arise from mixing blood from two incompatible individuals. He found that mixing incompatible types triggers an immune response and the red blood-cells clump. The immunological reaction occurs when the receiver of a blood transfusion has antibodies against the donor blood-cells. The destruction of red blood cells releases free hemoglobin into the bloodstream, which can have fatal consequences. Landsteiner's work made it possible to determine blood group and allowed blood transfusions to take place much more safely. For his discovery he won the Nobel Prize in Physiology and Medicine in 1930; many other blood groups have been discovered since.

George Washington Crile is credited with performing the first surgery using a direct blood transfusion in 1906 at St. Alexis Hospital in Cleveland while a professor of surgery at Case Western Reserve University.[90]

Jan Janský also discovered the human blood groups; in 1907 he classified blood into four groups: I, II, III, IV.[91] His nomenclature is still used in Russia and in states of the former USSR, in which blood types O, A, B, and AB are respectively designated I, II, III, and IV.

Dr. William Lorenzo Moss's (1876–1957) Moss-blood typing technique of 1910 was widely used until World War II.[92] [93]

William Stewart Halsted, M.D. (1852–1922), an American surgeon, performed one of the first blood transfusions in the United States. He had been called to see his sister after she had given birth. He found her moribund from blood loss, and in a bold move withdrew his own blood, transfused his blood into his sister, and then operated on her to save her life.

Blood banks in WWI

See main article: Blood bank. While the first transfusions had to be made directly from donor to receiver before coagulation, it was discovered that by adding anticoagulant and refrigerating the blood it was possible to store it for some days, thus opening the way for the development of blood banks. John Braxton Hicks was the first to experiment with chemical methods to prevent the coagulation of blood at St Mary's Hospital, London in the late-19th century. His attempts, using phosphate of soda, however, proved unsuccessful.

The Belgian doctor Albert Hustin performed the first non-direct transfusion on March 27, 1914, though this involved a diluted solution of blood. The Argentine doctor Luis Agote used a much less diluted solution in November of the same year. Both used sodium citrate as an anticoagulant.[94]

The First World War (1914–1918) acted as a catalyst for the rapid development of blood banks and transfusion techniques. Francis Peyton Rous and Joseph R. Turner at the Rockefeller University (then The Rockefeller Institute for Medical Research) made the first important discoveries that blood typing was necessary to avoid blood clumping (coagulation) and blood samples could be preserved using chemical treatment.[95] [96] Their first report in March 1915 showed that gelatine, agar, blood serum extracts, starch and beef albumin proved to be useless preservatives.[97]

However, building on the same experiment, they discovered that a mixture sodium citrate and glucose (dextrose) solution was a perfect preservative; as they reported in February issue of the Journal of Experimental Medicine, the preserved bloods were just like fresh bloods and that they "function excellently when reintroduced into the body."[98] Blood could be preserved for up to four weeks. An accompanying experiment using citrate-saccharose (sucrose) mixture was also a success which could maintain blood cells for two weeks.[99] This use of citrate and sugars, sometimes known as Rous-Turner solution, was the foundation for the development of blood banks and improvement of transfusion method.[100] [101]

Another discovery of Rous and Turner was the most critical step in the safety of blood transfusion. Rous was well aware that Landsteiner's concept of blood types had not yet find practical value, as he remarked: "The fate of Landsteiner's effort to call attention to the practical bearing of the group differences in human bloods provides an exquisite instance of knowledge marking time on technique. Transfusion was still not done because (until at least 1915), the risk of clotting was too great."[102] In June 1915, they made a crucial report in the Journal of the American Medical Association that agglutination could be avoided if the blood samples of the donor and recipient were tested before. Which they called a rapid and simple method for testing blood compatibility, sodium citrate was used to dilute the blood samples, and after mixing the recipient's and donor's blood in 9:1 and 1:1 parts, blood would either clump or remain watery after 15 minutes. According to their advice, blood without clumping "should always be chosen if possible."[103]

Canadian doctor and Lieutenant Lawrence Bruce Robertson became instrumental in persuading the Royal Army Medical Corps to adopt the use of blood transfusion at the Casualty Clearing Stations for the wounded. In October 1915, Robertson performed his first wartime transfusion with a syringe to a patient who had multiple shrapnel wounds. He followed this up with four subsequent transfusions in the following months, and his success was reported to Sir Walter Morley Fletcher, director of the Medical Research Committee.[104]

Robertson published his findings in the British Medical Journal in 1916 and, with the help of a few like-minded individuals (including the eminent physician Edward William Archibald), was able to persuade the British authorities of the merits of blood transfusion. Robertson went on to establish the first blood-transfusion apparatus at a Casualty Clearing Station on the Western Front in the spring of 1917.[105] Robertson did not test crossmatching so that one died of hemolysis in his 1916 transfusion, and three in 1917.[106]

Oswald Hope Robertson, a medical researcher and U.S. Army officer, was attached to the RAMC in 1917, where he became instrumental in establishing the first blood banks in preparation for the anticipated Third Battle of Ypres.[107] He used sodium citrate as the anticoagulant; blood was extracted from punctures in the vein and was stored in bottles at British and American Casualty Clearing Stations along the Front. Robertson also experimented with preserving separated red blood cells in iced bottles. Geoffrey Keynes, a British surgeon, developed a portable machine that could store blood to enable transfusions to be carried out more easily.

Expansion

The secretary of the British Red Cross, Percy Lane Oliver, established the world's first blood-donor service in 1921. In that year, Oliver was contacted by King's College Hospital, where they were in urgent need of a blood donor.[108] After providing a donor, Oliver set about organizing a system for the voluntary registration of blood donors at clinics around London, with Sir Geoffrey Keynes appointed as a medical adviser. Volunteers were subjected to a series of physical tests to establish their blood group. The London Blood Transfusion Service was free of charge and expanded rapidly in its first few years of operation. By 1925 it was providing services for almost 500 patients; it was incorporated into the structure of the British Red Cross in 1926. Similar systems developed in other cities, including Sheffield, Manchester and Norwich, and the service's work began to attract international attention. France, Germany, Austria, Belgium, Australia and Japan established similar services.[109]

Alexander Bogdanov founded an academic institution devoted to the science of blood transfusion in Moscow in 1925. Bogdanov was motivated, at least in part, by a search for eternal youth, and remarked with satisfaction on the improvement of his eyesight, suspension of balding, and other positive symptoms after receiving 11 transfusions of whole blood. Bogdanov died in 1928 as a result of one of his experiments, when the blood of a student with malaria and tuberculosis was given to him in a transfusion.[110] Following Bogdanov's lead, Vladimir Shamov and Sergei Yudin in the USSR pioneered the transfusion of cadaveric blood from recently deceased donors. Yudin performed such a transfusion successfully for the first time on March 23, 1930, and reported his first seven clinical transfusions with cadaveric blood at the Fourth Congress of Ukrainian Surgeons at Kharkiv in September. However, this method was never used widely, even in the Soviet Union. Nevertheless, the Soviet Union was the first to establish a network of facilities to collect and store blood for use in transfusions at hospitals.

Frederic Durán-Jordà established one of the earliest blood banks during the Spanish Civil War in 1936. Duran joined the Transfusion Service at the Barcelona Hospital at the start of the conflict, but the hospital was soon overwhelmed by the demand for blood and the paucity of available donors. With support from the Department of Health of the Spanish Republican Army, Duran established a blood bank for the use of wounded soldiers and civilians. The 300–400 mL of extracted blood was mixed with 10% citrate solution in a modified Duran Erlenmeyer flask. The blood was stored in a sterile glass enclosed under pressure at 2 °C. During 30 months of work, the Transfusion Service of Barcelona registered almost 30,000 donors, and processed 9,000 liters of blood.[111]

In 1937 Bernard Fantus, director of therapeutics at the Cook County Hospital in Chicago, established the first hospital blood-bank in the United States. In setting up a hospital laboratory that preserved, refrigerated and stored donor blood, Fantus originated the term "blood bank". Within a few years, hospital and community blood-banks were established across the United States.[112]

Frederic Durán-Jordà fled to Britain in 1938 and worked with Dr Janet Vaughan at the Royal Postgraduate Medical School at Hammersmith Hospital to establish a system of national blood banks in London.[113] With the outbreak of war appearing imminent in 1938, the War Office created the Army Blood Supply Depot (ABSD) in Bristol, headed by Lionel Whitby and in control of four large blood-depots around the country. British policy through the war was to supply military personnel with blood from centralized depots, in contrast to the approach taken by the Americans and Germans where troops at the front were bled to provide required blood. The British method proved more successful in adequately meeting all requirements, and over 700,000 donors were bled over the course of the war. This system evolved into the National Blood Transfusion Service established in 1946, the first national service to be implemented.[114]

Stories tell of Nazis in Eastern Europe during World War II using captive children as repeated involuntary blood-donors.[115]

Medical advances

A blood-collection program was initiated in the US in 1940 and Edwin Cohn pioneered the process of blood fractionation. He worked out the techniques for isolating the serum albumin fraction of blood plasma, which is essential for maintaining the osmotic pressure in the blood vessels, preventing their collapse.

Gordon R. Ward, writing in the correspondence columns of the British Medical Journal, proposed the use of blood plasma as a substitute for whole blood and for transfusion purposes as early as 1918. At the onset of World War II, liquid plasma was used in Britain. A large project, known as "Blood for Britain", began in August 1940 to collect blood in New York City hospitals for the export of plasma to Britain. A freeze-dried plasma package was developed by the Surgeons General of the Army and Navy, working with the National Research Council,[116] which reduced breakage and made transportation, packaging, and storage much simpler.[117]

The resulting dried plasma package came in two tin cans containing 400 mL bottles. One bottle contained enough distilled water to reconstitute the dried plasma contained within the other bottle. In about three minutes, the plasma would be ready to use and could stay fresh for around four hours.[118] Dr. Charles R. Drew was appointed medical supervisor, and he was able to transform the test-tube methods into the first successful technique for mass production.

Another important breakthrough came in 1937–40 when Karl Landsteiner (1868–1943), Alex Wiener, Philip Levine, and R.E. Stetson discovered the Rhesus blood group system, which was found to be the cause of the majority of transfusion reactions up to that time. Three years later, the introduction by J.F. Loutit and Patrick L. Mollison of acid–citrate–dextrose (ACD) solution, which reduced the volume of anticoagulant, permitted transfusions of greater volumes of blood and allowed longer-term storage.

Carl Walter and W.P. Murphy Jr. introduced the plastic bag for blood collection in 1950. Replacing breakable glass bottles with durable plastic bags made from PVC allowed for the evolution of a collection system capable of safe and easy preparation of multiple blood components from a single unit of whole blood.

In the field of cancer surgery, the replacement of massive blood-loss became a major problem. The cardiac-arrest rate was high. In 1963 C. Paul Boyan and William S. Howland discovered that the temperature of the blood and the rate of infusion greatly affected survival rates, and introduced blood warming to surgery.[119] [120]

Further extending the shelf-life of stored blood up to 42 days was an anticoagulant preservative, CPDA-1, introduced in 1979, which increased the blood supply and facilitated resource-sharing among blood banks.[121] [122]

about 15 million units of blood products were transfused per year in the United States.[123] By 2013 the number had declined to about 11 million units, because of the shift towards laparoscopic surgery and other surgical advances and studies that have shown that many transfusions were unnecessary. For example, the standard of care reduced the amount of blood transfused in one case from 750 to 200 mL.[75] In 2019, 10,852,000 RBC units, 2,243,000 platelet units, and 2,285,000 plasma units were transfused in the United States.

Special populations

Neonate

To ensure the safety of blood transfusion to pediatric patients, hospitals are taking additional precautions to avoid infection and prefer to use pediatric blood units that are guaranteed "safe" from Cytomegalovirus. Some guidelines have recommended the provision of CMV-negative blood components and not simply leukoreduced components for newborns or low birthweight infants in whom the immune system is not fully developed,[124] but practice varies.[125] These requirements place additional restrictions on blood donors who can donate for neonatal use, which may be impractical given the rarity of CMV seronegative donors and the preference for fresh units.

Neonatal transfusions typically fall into one of two categories:

Significant blood loss

A massive transfusion protocol is used when significant blood loss is present such as in major trauma, when more than ten units of blood are needed. Packed red blood cells, fresh frozen plasma, and platelets are generally administered.[127] Typical ratios of fresh frozen plasma, platelets and packed red blood cells are between 1:1:1 and 1:1:2.[128]

In some locations, blood has begun to be administered pre-hospital in an effort to reduce preventable deaths from significant blood loss. Earlier analyses suggested that in the US, up to 31,000 patients per year bleed to death that otherwise could have survived if pre-hospital transfusions were widely available.[129] For example, when a mother experiences severe blood loss during pregnancy,[130] ambulances are able to arrive with blood stored in portable, FDA listed blood refrigerators, similar to those found in blood banks. Once the infusion is given on scene, the patient and the ambulance have more time to get to a hospital for surgery and additional infusions if needed. This could be critical in rural areas or sprawling cities where patients can be far from a major hospital and the local emergency medical team may need to use blood infusions to keep that patient alive during transport. Larger studies pointed to improvements in 24-hour mortality with pre-hospital plasma and RBC transfusions, but no difference in 30-day or long-term mortality.[131]

Unknown blood type

Because blood type O negative is compatible with anyone, it is often overused and in short supply.[132] According to the Association for the Advancement of Blood and Biotherapies, the use of this blood should be restricted to persons with O negative blood, as nothing else is compatible with them, and women who might be pregnant and for whom it would be impossible to do blood group testing before giving them emergency treatment. Whenever possible, the AABB recommends that O negative blood be conserved by using blood type testing to identify a less scarce alternative.

Religious objections

Jehovah's Witnesses may object to blood transfusions because of their belief that blood is sacred.[133]

Research into alternatives

See also: Blood substitutes. Although there are clinical situations where transfusion with red blood cells is the only clinically appropriate option, clinicians look at whether alternatives are feasible. This can be due to several reasons, such as patient safety, economic burden or scarcity of blood. Guidelines recommend blood transfusions should be reserved for patients with or at risk of cardiovascular instability due to the degree of their anaemia.[134] [135] In stable patients with iron deficiency anemia, oral or parenteral iron is recommended.

Thus far, there are no FDA-approved oxygen-carrying blood substitutes, which is the typical objective of a blood (RBC) transfusion. Non-blood volume expanders are available for cases where only volume restoration is required, but a substance with oxygen-carrying capacity would help doctors and surgeons avoid the risks of disease transmission and immune suppression, address the chronic blood donor shortage, and address the concerns of Jehovah's Witnesses and others who have religious objections to receiving transfused blood.

The research in this area is ongoing. A number of blood substitutes have been explored, but thus far they all have serious limitations.[136] [137] Most attempts to find a suitable alternative to blood thus far have concentrated on cell-free hemoglobin solutions. Blood substitutes could make transfusions more readily available in emergency medicine and in pre-hospital EMS care. If successful, such a blood substitute could save many lives, particularly in trauma where massive blood loss results. Hemopure, a hemoglobin-based therapy, is approved for use in South Africa and has been used in the United States on a case-by-case basis through the emergency Investigational New Drug (IND) process.[138]

Veterinary use

See main article: Blood type (non-human).

Veterinarians also administer transfusions to other animals. Various species require different levels of testing to ensure a compatible match. For example, cats have 3 known blood types,[139] cattle have 11, dogs have at least 13,[140] pigs have 16,[141] and horses over 30. However, in many species (especially horses and dogs), cross matching is not required before the first transfusion, as antibodies against non-self cell surface antigens are not expressed constitutively – i.e. the animal has to be sensitized before it will mount an immune response against the transfused blood.[142]

The rare and experimental practice of inter-species blood transfusions (xenotransfusion) is a form of xenograft.

See also

Further reading

External links

Blood transfusion societies

Books

Guidelines

Patient information

Notes and References

  1. Web site: Blood Transfusion National Heart, Lung, and Blood Institute (NHLBI). www.nhlbi.nih.gov. 2019-06-16. 2019-06-23. https://web.archive.org/web/20190623181239/https://www.nhlbi.nih.gov/health-topics/blood-transfusion. live.
  2. Van Gent . Jan-Michael . Clements . Thomas W. . Cotton . Bryan A. . Resuscitation and Care in the Trauma Bay . The Surgical Clinics of North America . 104 . 2 . 2024 . 1558-3171 . 38453302 . 10.1016/j.suc.2023.09.005 . 279–292.
  3. Adams RC, Lundy JS . 1942 . Anesthesia in cases of poor surgical risk. Some suggestions for decreasing risk . Surg Gynecol Obstet . 74 . 1011–1019 .
  4. Carson JL, Grossman BJ, Kleinman S, Tinmouth AT, Marques MB, Fung MK, Holcomb JB, Illoh O, Kaplan LJ, Katz LM, Rao SV, Roback JD, Shander A, Tobian AA, Weinstein R, Swinton McLaughlin LG, Djulbegovic B . 6 . Red blood cell transfusion: a clinical practice guideline from the AABB* . Annals of Internal Medicine . 157 . 1 . 49–58 . July 2012 . 22751760 . 10.7326/0003-4819-157-1-201206190-00429 . free . Clinical Transfusion Medicine Committee of the, AABB .
  5. Carson JL, Stanworth SJ, Dennis JA, Trivella M, Roubinian N, Fergusson DA, Triulzi D, Dorée C, Hébert PC . 6 . Transfusion thresholds for guiding red blood cell transfusion . The Cochrane Database of Systematic Reviews . 12 . 12 . CD002042 . December 2021 . 34932836 . 8691808 . 10.1002/14651858.CD002042.pub5 .
  6. Carson . Jeffrey L. . Stanworth . Simon J. . Guyatt . Gordon . Valentine . Stacey . Dennis . Jane . Bakhtary . Sara . Cohn . Claudia S. . Dubon . Allan . Grossman . Brenda J. . Gupta . Gaurav K. . Hess . Aaron S. . Jacobson . Jessica L. . Kaplan . Lewis J. . Lin . Yulia . Metcalf . Ryan A. . Murphy . Colin H. . Pavenski . Katerina . Prochaska . Micah T. . Raval . Jay S. . Salazar . Eric . Saifee . Nabiha H. . Tobian . Aaron A. R. . So-Osman . Cynthia . Waters . Jonathan . Wood . Erica M. . Zantek . Nicole D. . Pagano . Monica B. . Red Blood Cell Transfusion: 2023 AABB International Guidelines . JAMA . 330 . 19 . 2023-11-21 . 1538-3598 . 37824153 . 10.1001/jama.2023.12914 . 1892–1902.
  7. Villanueva C, Colomo A, Bosch A, Concepción M, Hernandez-Gea V, Aracil C, Graupera I, Poca M, Alvarez-Urturi C, Gordillo J, Guarner-Argente C, Santaló M, Muñiz E, Guarner C . 6 . Transfusion strategies for acute upper gastrointestinal bleeding . The New England Journal of Medicine . 368 . 1 . 11–21 . January 2013 . 23281973 . 10.1056/NEJMoa1211801 . free .
  8. Gasche C, Berstad A, Befrits R, Beglinger C, Dignass A, Erichsen K, Gomollon F, Hjortswang H, Koutroubakis I, Kulnigg S, Oldenburg B, Rampton D, Schroeder O, Stein J, Travis S, Van Assche G . 6 . Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases . Inflammatory Bowel Diseases . 13 . 12 . 1545–1553 . December 2007 . 17985376 . 10.1002/ibd.20285 . live . free . https://ghostarchive.org/archive/20221009/http://www.gasche.at/pdf/IBD_Journal_2007.pdf . 2022-10-09 .
  9. Web site: Blood safety and availability . . June 2014 . 22 August 2014 . 29 June 2008 . https://web.archive.org/web/20080629085919/http://www.who.int/mediacentre/factsheets/fs279/en/ . live .
  10. Distler P, Ashford P. Twenty-five years later: has ISBT 128 fulfilled its promise? Transfusion. 2019 Dec;59(12):3776-3782. doi: 10.1111/trf.15519. Epub 2019 Sep 29. PMID 31565803; PMCID: PMC6916302.
  11. Gress . Kyle L. . Charipova . Karina . Urits . Ivan . Viswanath . Omar . Kaye . Alan D. . Supply, Demand, and Quality: A Three-Pronged Approach to Blood Product Management in Developing Countries . Journal of Patient-Centered Research and Reviews . 8 . 2 . 2021 . 2330-0698 . 33898644 . 8060046 . 121–126. 10.17294/2330-0698.1799 .
  12. Webster J, Bell-Syer SE, Foxlee R . Skin preparation with alcohol versus alcohol followed by any antiseptic for preventing bacteraemia or contamination of blood for transfusion . The Cochrane Database of Systematic Reviews . 2015 . 2 . CD007948 . February 2015 . 25674776 . 7185566 . 10.1002/14651858.CD007948.pub3 . Cochrane Wounds Group .
  13. Edwards . Patrick W. . Zeichner . Amos . January 1985 . Blood donor development: Effects of personality, motivational and situational variables . Personality and Individual Differences . 6 . 6 . 743–751 . 10.1016/0191-8869(85)90085-6 . 0191-8869.
  14. Muthivhi . Tshilidzi . Olmsted . M. . Park . H. . Sha . Mandy . August 2015 . Motivators and deterrents to blood donation among Black South Africans: a qualitative analysis of focus group data . Transfusion Medicine . en . 25 . 4 . 249–258 . 10.1111/tme.12218 . 0958-7578 . 4583344 . 26104809.
  15. Book: Screening donated blood for transfusion-transmissible infections: recommendations. 2009. World Health Organization. 978-92-4-154788-8. https://ghostarchive.org/archive/20221009/http://apps.who.int/iris/bitstream/10665/44202/1/9789241547888_eng.pdf . 2022-10-09 . live.
  16. Web site: Blood safety and availability Fact sheet 279. World Health Organization. 21 January 2016. 29 June 2008. https://web.archive.org/web/20080629085919/http://www.who.int/mediacentre/factsheets/fs279/en/. live.
  17. Web site: Testing of donated blood. https://web.archive.org/web/20110318122653/http://www.who.int/bloodsafety/donation_testing/en/. dead. March 18, 2011. World Health Organization. 21 January 2016.
  18. Web site: Bacterial Detection Testing by Blood and Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion. FDA U.S. Food and Drug Administration. 21 January 2016.
  19. Benjamin RJ, McDonald CP . The international experience of bacterial screen testing of platelet components with an automated microbial detection system: a need for consensus testing and reporting guidelines . Transfusion Medicine Reviews . 28 . 2 . 61–71 . April 2014 . 24636779 . 10.1016/j.tmrv.2014.01.001 . ISBT Transfusion Transmitted Infectious Disease Bacterial Workgroup .
  20. Ziemann M, Hennig H . Prevention of Transfusion-Transmitted Cytomegalovirus Infections: Which is the Optimal Strategy? . Transfusion Medicine and Hemotherapy . 41 . 1 . 40–44 . February 2014 . 24659946 . 3949610 . 10.1159/000357102 .
  21. Bassuni WY, Blajchman MA, Al-Moshary MA . Why implement universal leukoreduction? . Hematology/Oncology and Stem Cell Therapy . 1 . 2 . 106–123 . 2008 . 20063539 . 10.1016/s1658-3876(08)50042-2 . free .
  22. Hardwick CC, Herivel TR, Hernandez SC, Ruane PH, Goodrich RP . Separation, identification and quantification of riboflavin and its photoproducts in blood products using high-performance liquid chromatography with fluorescence detection: a method to support pathogen reduction technology . Photochemistry and Photobiology . 80 . 3 . 609–615 . 2004 . 15382964 . 10.1562/0031-8655(2004)080<0609:TNSIAQ>2.0.CO;2 . 198154059 .
  23. A randomized controlled clinical trial evaluating the performance and safety of platelets treated with MIRASOL pathogen reduction technology . Transfusion . 50 . 11 . 2362–2375 . November 2010 . 20492615 . 10.1111/j.1537-2995.2010.02694.x . 28186229 . J. . R.P. . P. . B. . R.J. . Gines . Paolo . D. . R. . C. . T. . J. . J.-D. . L. .
  24. Goodrich RP, Edrich RA, Li J, Seghatchian J . The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends . Transfusion and Apheresis Science . 35 . 1 . 5–17 . August 2006 . 16935562 . 10.1016/j.transci.2006.01.007 .
  25. Fast LD, DiLeone G, Cardarelli G, Li J, Goodrich R . Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft-versus-host disease in Rag2-/-gamma c-/- double knockout mice . Transfusion . 46 . 9 . 1553–1560 . September 2006 . 16965583 . 10.1111/j.1537-2995.2006.00939.x . 13065820 .
  26. Fast LD, DiLeone G, Marschner S . Inactivation of human white blood cells in platelet products after pathogen reduction technology treatment in comparison to gamma irradiation . Transfusion . 51 . 7 . 1397–1404 . July 2011 . 21155832 . 10.1111/j.1537-2995.2010.02984.x . 34154946 .
  27. Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP . Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation . Transfusion Medicine Reviews . 22 . 2 . 133–153 . April 2008 . 18353253 . 10.1016/j.tmrv.2007.12.003 .
  28. Web site: Blood Donation and Processing. https://web.archive.org/web/20090303204956/http://library.med.utah.edu/WebPath/TUTORIAL/BLDBANK/BBPROC.html. dead. March 3, 2009. webpath.med.utah.edu.
  29. Book: Harmening D . Modern Blood Banking and Transfusion Practices . Philadelphia . F. A. Davis . 4th . 1999 . 978-0-8036-0419-3 . registration .
  30. Web site: WHO | Haemovigilance . https://web.archive.org/web/20110318122450/http://www.who.int/bloodsafety/haemovigilance/en/ . dead . March 18, 2011 . Who.int . 2013-06-25 . 2013-12-11.
  31. Web site: SHOT Terms of Reference . Shotuk.org . 22 August 2014 . 30 September 2020 . https://web.archive.org/web/20200930013157/https://www.shotuk.org/home/shot-organisation/141-2/ . dead .
  32. Berg . P . Heiden . M . Müller . S . Meyer . B . Witzenhausen . C . Ruppert-Seipp . G . Kehr . S . Funk . M.B. . 2024-06-18 . A national surveillance system for continuous monitoring of blood transfusion safety: German haemovigilance data . Vox Sanguinis . en . 10.1111/vox.13694 . 0042-9007 . free . 38889998 .
  33. Wang, SS. "What's the Shelf Life of Blood? Focus on Whether Older Donations Impair Recovery of Transfusion Recipients". The Wall Street Journal. 2009 Dec. 1.
  34. Book: The 2014 Annual SHOT Report (2015). Bolton-Maggs PH, Poles D . SHOT. 2015. 978-0-9558648-7-2 . Serious Hazards of Transfusion (SHOT) Steering Group. 2016-01-21. https://web.archive.org/web/20160127114949/http://www.shotuk.org/wp-content/uploads/report-2014.pdf. 2016-01-27. dead.
  35. Web site: The 2011 National Blood Collection and Utilization Survey Report. 21 January 2016. Department of Health and Human Services. 19 March 2016. https://web.archive.org/web/20160319015943/http://www.hhs.gov/ash/bloodsafety/2011-nbcus.pdf. dead.
  36. Book: Laura D. Blood Groups and Red Cell Antigens. 2005. National Center for Biotechnology Information. Bethesda, United States. 4 October 2017. 25 March 2021. https://web.archive.org/web/20210325083706/https://www.ncbi.nlm.nih.gov/books/NBK2261/. live.
  37. Book: Practical Transfusion Medicine. Murphy M . Wiley-Blackwell. 2013. 127–130. Post-transfusion purpura. 4th. Murphy M, Pamphilon D, Heddle N .
  38. Web site: NHSN CDC. 2017-12-29. www.cdc.gov. en-us. 2018-09-18. 2018-09-21. https://web.archive.org/web/20180921075847/https://www.cdc.gov/nhsn/. live.
  39. Kim J, Na S . Transfusion-related acute lung injury; clinical perspectives . Korean Journal of Anesthesiology . 68 . 2 . 101–105 . April 2015 . 25844126 . 4384395 . 10.4097/kjae.2015.68.2.101 .
  40. Kopolovic I, Ostro J, Tsubota H, Lin Y, Cserti-Gazdewich CM, Messner HA, Keir AK, DenHollander N, Dzik WS, Callum J . 6 . A systematic review of transfusion-associated graft-versus-host disease . Blood . 126 . 3 . 406–414 . July 2015 . 25931584 . 10.1182/blood-2015-01-620872 . free .
  41. Youssef . Lyla A. . Spitalnik . Steven L. . Transfusion-related immunomodulation: a reappraisal . Current Opinion in Hematology . 24 . 6 . 2017 . 1531-7048 . 28806274 . 5755702 . 10.1097/MOH.0000000000000376 . 551–557.
  42. Rohde JM, Dimcheff DE, Blumberg N, Saint S, Langa KM, Kuhn L, Hickner A, Rogers MA . 6 . Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis . JAMA . 311 . 13 . 1317–1326 . April 2014 . 24691607 . 4289152 . 10.1001/jama.2014.2726 .
  43. Ackfeld . Theresa . Schmutz . Thomas . Guechi . Youcef . Le Terrier . Christophe . Blood Transfusion Reactions-A Comprehensive Review of the Literature including a Swiss Perspective . Journal of Clinical Medicine . 11 . 10 . 2022-05-19 . 2077-0383 . 35628985 . 9144124 . 10.3390/jcm11102859 . free . 2859.
  44. Zubair AC . Clinical impact of blood storage lesions . American Journal of Hematology . 85 . 2 . 117–122 . February 2010 . 20052749 . 10.1002/ajh.21599 . 205293048 . free .
  45. Heaton A, Keegan T, Holme S . In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells . British Journal of Haematology . 71 . 1 . 131–136 . January 1989 . 2492818 . 10.1111/j.1365-2141.1989.tb06286.x . 43303207 .
  46. Frank SM, Abazyan B, Ono M, Hogue CW, Cohen DB, Berkowitz DE, Ness PM, Barodka VM . 6 . Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration . Anesthesia and Analgesia . 116 . 5 . 975–981 . May 2013 . 23449853 . 3744176 . 10.1213/ANE.0b013e31828843e6 .
  47. Barshtein G, Gural A, Manny N, Zelig O, Yedgar S, Arbell D . Storage-induced damage to red blood cell mechanical properties can be only partially reversed by rejuvenation . Transfusion Medicine and Hemotherapy . 41 . 3 . 197–204 . June 2014 . 25053933 . 4086768 . 10.1159/000357986 .
  48. News: The Shelf Life of Donor Blood . The New York Times . Bakalar N . 2013-03-11 . 2013-04-05 . 2013-03-17 . https://web.archive.org/web/20130317014828/http://well.blogs.nytimes.com/2013/03/11/the-shelf-life-of-donor-blood/ . live .
  49. News: What's the Shelf Life of Blood? . The Wall Street Journal . Wang SS . 2009-12-01 . 2017-08-03 . 2017-07-09 . https://web.archive.org/web/20170709021358/https://www.wsj.com/articles/SB10001424052748703939404574567771148801570 . live .
  50. Aubron C, Nichol A, Cooper DJ, Bellomo R . Age of red blood cells and transfusion in critically ill patients . Annals of Intensive Care . 3 . 1 . 2 . January 2013 . 23316800 . 3575378 . 10.1186/2110-5820-3-2 . free .
  51. Fergusson . Dean A. . Hébert . Paul . Hogan . Debora L. . LeBel . Louise . Rouvinez-Bouali . Nicole . Smyth . John A. . Sankaran . Koravangattu . Tinmouth . Alan . Blajchman . Morris A. . Kovacs . Lajos . Lachance . Christian . Lee . Shoo . Walker . C. Robin . Hutton . Brian . Ducharme . Robin . Balchin . Katelyn . Ramsay . Tim . Ford . Jason C. . Kakadekar . Ashok . Ramesh . Kuppuchipalayam . Shapiro . Stan . Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial . JAMA . 308 . 14 . 2012-10-10 . 1538-3598 . 23045213 . 10.1001/2012.jama.11953 . 1443–1451.
  52. Walsh . Timothy S. . Stanworth . Simon . Boyd . Julia . Hope . David . Hemmatapour . Sue . Burrows . Helen . Campbell . Helen . Pizzo . Elena . Swart . Nicholas . Morris . Stephen . The Age of BLood Evaluation (ABLE) randomised controlled trial: description of the UK-funded arm of the international trial, the UK cost-utility analysis and secondary analyses exploring factors associated with health-related quality of life and health-care costs during the 12-month follow-up . Health Technology Assessment (Winchester, England) . 21 . 62 . 2017 . 2046-4924 . 29067906 . 5682573 . 10.3310/hta21620 . 1–118.
  53. Hod EA, Zhang N, Sokol SA, Wojczyk BS, Francis RO, Ansaldi D, Francis KP, Della-Latta P, Whittier S, Sheth S, Hendrickson JE, Zimring JC, Brittenham GM, Spitalnik SL . 6 . Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation . Blood . 115 . 21 . 4284–4292 . May 2010 . 20299509 . 2879099 . 10.1182/blood-2009-10-245001 .
  54. Hess JR . Scientific problems in the regulation of red blood cell products . Transfusion . 52 . 8 . 1827–1835 . August 2012 . 22229278 . 10.1111/j.1537-2995.2011.03511.x . 24689742 .
  55. Pape A, Stein P, Horn O, Habler O . Clinical evidence of blood transfusion effectiveness . Blood Transfusion = Trasfusione del Sangue . 7 . 4 . 250–258 . October 2009 . 20011636 . 2782802 . 10.2450/2008.0072-08 .
  56. Burns JM, Yang X, Forouzan O, Sosa JM, Shevkoplyas SS . Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells . Transfusion . 52 . 5 . 1010–1023 . May 2012 . 22043858 . 10.1111/j.1537-2995.2011.03418.x . 205724851 .
  57. Raval JS, Waters JH, Seltsam A, Scharberg EA, Richter E, Daly AR, Kameneva MV, Yazer MH . 6 . The use of the mechanical fragility test in evaluating sublethal RBC injury during storage . Vox Sanguinis . 99 . 4 . 325–331 . November 2010 . 20673245 . 10.1111/j.1423-0410.2010.01365.x . 41654664 .
  58. Shander A, Hofmann A, Gombotz H, Theusinger OM, Spahn DR . Estimating the cost of blood: past, present, and future directions . Best Practice & Research. Clinical Anaesthesiology . 21 . 2 . 271–289 . June 2007 . 17650777 . 10.1016/j.bpa.2007.01.002 .
  59. Web site: Transfusion Overuse: Exposing an International Problem and Patient Safety Issue . Patient Safety Movement Foundation . 2013 . 15 March 2022 . 1 April 2022 . https://web.archive.org/web/20220401033720/https://patientsafetymovement.org/wp-content/uploads/2022/03/Action-Plan-RBC-Overuse-January-13-2013.pdf . dead .
  60. Web site: Easy does it – showing caution with RBC transfusions . College of American Pathologists . April 2009 . 22 August 2014.
  61. Devine DV, Serrano K . The platelet storage lesion . Clinics in Laboratory Medicine . 30 . 2 . 475–487 . June 2010 . 20513565 . 10.1016/j.cll.2010.02.002 .
  62. Cata JP, Wang H, Gottumukkala V, Reuben J, Sessler DI . Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions . British Journal of Anaesthesia . 110 . 5 . 690–701 . May 2013 . 23599512 . 3630286 . 10.1093/bja/aet068 .
  63. Wang T, Luo L, Huang H, Yu J, Pan C, Cai X, Hu B, Yin X . 6 . Perioperative blood transfusion is associated with worse clinical outcomes in resected lung cancer . The Annals of Thoracic Surgery . 97 . 5 . 1827–1837 . May 2014 . 24674755 . 10.1016/j.athoracsur.2013.12.044 . free .
  64. Churchhouse AM, Mathews TJ, McBride OM, Dunning J . Does blood transfusion increase the chance of recurrence in patients undergoing surgery for lung cancer? . Interactive Cardiovascular and Thoracic Surgery . 14 . 1 . 85–90 . January 2012 . 22108935 . 3420304 . 10.1093/icvts/ivr025 .
  65. Kormi SM, Seghatchian J . Taming the immune system through transfusion in oncology patients . Transfusion and Apheresis Science . 56 . 3 . 310–316 . June 2017 . 28651910 . 10.1016/j.transci.2017.05.017 .
  66. Abou Daher . Layal . Heppell . Olivia . Lopez-Plaza . Ileana . Guerra-Londono . Carlos E. . Perioperative Blood Transfusions and Cancer Progression: A Narrative Review . Current Oncology Reports . 26 . 8 . 2024 . 1534-6269 . 38847973 . 10.1007/s11912-024-01552-3 . 880–889.
  67. Soldevila-Verdeguer C, Segura-Sampedro JJ, Pineño-Flores C, Sanchís-Cortés P, González-Argente X, Morales-Soriano R . Hepatic resection and blood transfusion increase morbidity after cytoreductive surgery and HIPEC for colorectal carcinomatosis . Clinical & Translational Oncology . 22 . 11 . 2032–2039 . November 2020 . 32277348 . 10.1007/s12094-020-02346-2 . 215724889 .
  68. Poder . Thomas G. . Nonkani . Wendyam G. . Tsakeu Leponkouo . Élyonore . Blood Warming and Hemolysis: A Systematic Review With Meta-Analysis . Transfusion Medicine Reviews . 29 . 3 . 2015 . 1532-9496 . 25840802 . 10.1016/j.tmrv.2015.03.002 . 172–180.
  69. Vedantam . Aditya . Yamal . Jose-Miguel . Rubin . Maria Laura . Robertson . Claudia S. . Gopinath . Shankar P. . Progressive hemorrhagic injury after severe traumatic brain injury: effect of hemoglobin transfusion thresholds . Journal of Neurosurgery . 125 . 5 . 2016 . 1933-0693 . 26943843 . 5065393 . 10.3171/2015.11.JNS151515 . 1229–1234.
  70. Schriner . Jacob B. . Van Gent . J. Michael . Meledeo . M. Adam . Olson . Scott D. . Cotton . Bryan A. . Cox . Charles S. . Gill . Brijesh S. . Impact of Transfused Citrate on Pathophysiology in Massive Transfusion . Critical Care Explorations . 5 . 6 . 2023 . 2639-8028 . 37275654 . 10234463 . 10.1097/CCE.0000000000000925 . e0925.
  71. Web site: Sklar R . Damage Control Resuscitation and Management in Severe Hemorrage/Shock in the Prehospital Setting. https://ghostarchive.org/archive/20221009/https://internationaltraumalifesupport.remote-learner.net/pluginfile.php/8291/mod_resource/content/1/Position%20Paper%20-%20Damage%20Control%20Resuscitation%20-%202019.pdf . 2022-10-09 . live . internationaltraumalifesupport.remote-learner.net . ITLA . May 2019.
  72. Marchand . Alexandre . Roulland . Ingrid . Semence . Florian . Jaffredo . Franck . Dehainault . Catherine . Le Guiner . Soizic . Le Pajolec . Marie-Gaëlle . Donati . Francesco . Mekacher . Lamine Redouane . Lamek . Kahina . Ericsson . Magnus . Evaluation of the detection of the homologous transfusion of a red blood cell concentrate in vivo for antidoping . Drug Testing and Analysis . 15 . 11–12 . 2023 . 1942-7611 . 36709998 . 10.1002/dta.3448 . 1417–1429.
  73. Roberts . Nicholas . James . Spencer . Delaney . Meghan . Fitzmaurice . Christina . 2019 . The global need and availability of blood products: a modelling study . The Lancet Haematology . en . 6 . 12 . e606–e615 . 10.1016/S2352-3026(19)30200-5 . 31631023 . 2024-07-12 . 2024-06-10 . https://web.archive.org/web/20240610051532/https://linkinghub.elsevier.com/retrieve/pii/S2352302619302005 . live .
  74. Book: Pfuntner A, Wier LM, Stocks C . Most Frequent Procedures Performed in U.S. Hospitals, 2011 . October 2013 . Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. ]. Rockville (MD) . Agency for Healthcare Research and Quality . Statistical Brief #165 . 24354027 . 2023-06-08 . 2023-02-20 . https://web.archive.org/web/20230220095348/https://www.ncbi.nlm.nih.gov/books/NBK174682/ . live .
  75. News: Wald ML. Blood Industry Shrinks as Transfusions Decline. 2014-08-24. The New York Times Newspaper. New York Times. Web Edition. 2014-08-24. 39. 2014-08-25. https://web.archive.org/web/20140825125011/http://www.nytimes.com/2014/08/23/business/blood-industry-hurt-by-surplus.html. live.
  76. Jones JM, Sapiano MRP, Mowla S, Bota D, Berger JJ, Basavaraju SV. Has the trend of declining blood transfusions in the United States ended? Findings of the 2019 National Blood Collection and Utilization Survey. Transfusion. 2021 Sep;61 Suppl 2(Suppl 2):S1-S10. doi: 10.1111/trf.16449. Epub 2021 Jun 24. PMID 34165191; PMCID: PMC8943822.
  77. Book: Scientific American. 1869. Munn & Company. 122. en. 2021-08-08. 2024-03-07. https://web.archive.org/web/20240307231121/https://books.google.com/books?id=RmM9AQAAIAAJ&q=carbonic+oxide#v=snippet&q=carbonic%20oxide&f=false. live.
  78. Book: Duffin, Jacalyn . History of Medicine . University of Toronto Press . Toronto ; Buffalo . 1999-01-01 . 0-8020-7912-1 . ocm45734968 . 171.
  79. Rivera AM, Strauss KW, van Zundert A, Mortier E . The history of peripheral intravenous catheters: how little plastic tubes revolutionized medicine . Acta Anaesthesiologica Belgica . 56 . 3 . 271–282 . 2005 . 16265830 . dead . https://web.archive.org/web/20140715002449/http://www.sarb.be/fr/journal/artikels_acta_2005/artikels_acta_56_3/acta_56_3_rivera.pdf . 2014-07-15 .
  80. Web site: The First Blood Transfusion? . Heart-valve-surgery.com . 2009-01-03 . 2010-02-09 . 2013-02-16 . https://web.archive.org/web/20130216035815/http://www.heart-valve-surgery.com/heart-surgery-blog/2009/01/03/first-blood-transfusion/ . live .
  81. Web site: This Month in Anesthesia History (archived) . 2016-03-05 . dead . https://web.archive.org/web/20110720122419/https://www.anesthesia.wisc.edu/AHA/Calendar/June.html . July 20, 2011 .
  82. Web site: Red Gold. Innovators & Pioneers. Jean-Baptiste Denis . PBS . 2010-02-09 . 2012-11-10 . https://web.archive.org/web/20121110213608/http://www.pbs.org/wnet/redgold/innovators/bio_denis.html . live .
  83. Book: 10.1002/9780470986868. Mollison's Blood Transfusion in Clinical Medicine. 2005. Klein HG, Anstee DJ. 978-0-470-98686-8.
  84. Web site: Yale E. First Blood Transfusion: A History. JSTOR. 22 April 2015. 2015-04-22. 2015-04-24. https://web.archive.org/web/20150424181706/http://daily.jstor.org/first-blood-transfusion. live.
  85. Felts JH . Richard Lower: anatomist and physiologist . Annals of Internal Medicine . 132 . 5 . 420–423 . March 2000 . 10691601 . 10.7326/0003-4819-132-5-200003070-00023 . 21469192 .
  86. Ellis H . James Blundell, pioneer of blood transfusion. . British Journal of Hospital Medicine . August 2005 . 68 . 8 . 447 . 10.12968/hmed.2007.68.8.24500 . 17847699 . 2013-01-01 . 2012-03-31 . https://web.archive.org/web/20120331104528/http://www.bjhm.co.uk/cgi-bin/go.pl/library/article.cgi?uid=24500;article=hm_68_8_447 . live .
  87. Book: Bridge Across the Abyss: Medical Myths and Misconceptions. Madbak F . Universal-Publishers. 2008. 978-1-58112-987-8. 22.
  88. Book: The History of the Blood Transfusion Service In Edinburgh. Masson A . 1993. Edinburgh.
  89. Book: Scientific American, 'A Successful Case of Transfusion of Blood'. 1880. Munn & Company. 281. en. 2021-06-06. 2023-01-12. https://web.archive.org/web/20230112202810/https://books.google.com/books?id=6ok9AQAAIAAJ. live.
  90. Nathoo N, Lautzenheiser FK, Barnett GH . The first direct human blood transfusion: the forgotten legacy of George W. Crile . Neurosurgery . 64 . 3 Suppl . 20–26; discussion 26–27 . March 2009 . 19240569 . 10.1227/01.NEU.0000334416.32584.97 . [...] the first successful blood transfusion performed between 2 brothers on August 6, 1906, at St. Alexis Hospital, Cleveland, OH. . 2339938 .
  91. cs | "Hematologická studie u psychotiků"
  92. Web site: Dr. William Lorenzo Moss . 2014-02-22 . https://web.archive.org/web/20140228170325/http://onlineathens.com/stories/090501/ath_drmoss.shtml . 2014-02-28 . dead .
  93. "Studies on isoagglutinins and isohemolysins". Bulletin Johns Hopkins Hospital 21: 63–70.
  94. 10.1001/jama.1940.02810160078030. Effect of External Temperature on Sedimentation Rate of Red Blood Corpuscles. 1940. Gordon MB . Journal of the American Medical Association. 114. 16.
  95. Web site: 2010 . The Rockefeller University Hospital Centennial – The First Blood Bank . 2022-03-18 . centennial.rucares.org . The Rockefeller University . 2022-03-31 . https://web.archive.org/web/20220331111840/https://centennial.rucares.org/index.php?page=Blood_Bank . live .
  96. News: Brody JE . 1970-02-17 . Dr. Peyton Rous, Nobel Laureate, Dies . en-US . 43 . The New York Times . 2022-03-18 . 0362-4331.
  97. Rous P, Turner JR . March 1915 . On the preservation in vitro of living erythrocytes . Experimental Biology and Medicine . en . 12 . 6 . 122–124 . 10.3181/00379727-12-74 . 1535-3702 . 88016286.
  98. Rous P, Turner JR . The Preservation of Living Red Blood Cells in Vitro . The Journal of Experimental Medicine . 23 . 2 . 219–237 . February 1916 . 19867981 . 2125399 . 10.1084/jem.23.2.219 .
  99. Rous P, Turner JR . The Preservation of Living Red Blood Cells in Vitro . The Journal of Experimental Medicine . 23 . 2 . 239–248 . February 1916 . 19867982 . 2125395 . 10.1084/jem.23.2.239 .
  100. Hess JR . An update on solutions for red cell storage . Vox Sanguinis . 91 . 1 . 13–19 . July 2006 . 16756596 . 10.1111/j.1423-0410.2006.00778.x . 35894834 .
  101. Hanigan WC, King SC . Cold blood and clinical research during World War I . Military Medicine . 161 . 7 . 392–400 . July 1996 . 8754712 . 10.1093/milmed/161.7.392 . free .
  102. Rous P . Francis Peyton Rous . 1947 . Karl Landsteiner. 1868–1943 . . 5 . 15 . 294–324 . 10.1098/rsbm.1947.0002 . 161789667.
  103. Rous P, Turner JR . 1915 . A rapid and simple method of testing donors for transfusion . Journal of the American Medical Association . LXIV . 24 . 1980–1982 . 10.1001/jama.1915.02570500028011.
  104. Web site: A Canadian kept blood flowing in WWI. An American got credit. https://web.archive.org/web/20170228233233/https://www.thestar.com/news/insight/2016/07/09/a-canadian-kept-blood-flowing-in-wwi-an-american-got-credit.html. dead. Katie Daubs Feature. Writer. July 9, 2016. February 28, 2017. Toronto Star.
  105. Pelis K . Taking credit: the Canadian Army Medical Corps and the British conversion to blood transfusion in WWI . Journal of the History of Medicine and Allied Sciences . 56 . 3 . 238–277 . July 2001 . 11552401 . 10.1093/jhmas/56.3.238 . 34956231 .
  106. Stansbury LG, Hess JR . Blood transfusion in World War I: the roles of Lawrence Bruce Robertson and Oswald Hope Robertson in the "most important medical advance of the war" . Transfusion Medicine Reviews . 23 . 3 . 232–236 . July 2009 . 19539877 . 10.1016/j.tmrv.2009.03.007 .
  107. Web site: Red Gold: the Epic Story of Blood. PBS. 2017-08-24. 2015-05-10. https://web.archive.org/web/20150510070430/http://www.pbs.org/wnet/redgold/history/timeline3.html. live.
  108. Book: The Great Ormond Street Hospital Manual of Children's Nursing Practices. Macqueen S, Bruce E, Gibson F . 2012. John Wiley & Sons. 75. 978-1-118-27422-4.
  109. Web site: Percy Oliver. Red Gold: The Eipc Story of Blood. 2017-08-24. 2015-04-16. https://web.archive.org/web/20150416153023/http://www.pbs.org/wnet/redgold/innovators/bio_oliver.html. live.
  110. Bernice Glatzer Rosenthal. New Myth, New World: From Nietzsche to Stalinism, Pennsylvania State University, 2002,, pp. 161–162.
  111. Book: Blood Banking and Transfusion Medicine: Basic Principles & Practice. Hillyer CD . 2007. Elsevier Health Sciences. 978-0-443-06981-9.
  112. Book: Kilduffe R, DeBakey M . The blood bank and the technique and therapeutics of transfusion. St. Louis: The C.V.Mosby Company. 1942. 196–197.
  113. Book: Starr D . Blood: An Epic History of Medicine and Commerce. 1998. Little, Brown and Company. 0-316-91146-1. 84–87.
  114. Giangrande PL . The history of blood transfusion . British Journal of Haematology . 110 . 4 . 758–767 . September 2000 . 11054057 . 10.1046/j.1365-2141.2000.02139.x . 71592265 . free .
  115. For example:News: Free World . 8 . 1944 . Free World, Inc. . 442 . 16 August 2019 . [...] Nazis chose the healthiest Polish children and transported them to German field hospitals where they used them for constant blood transfusions [...]. . 26 July 2024 . https://web.archive.org/web/20240726172745/https://books.google.com/books?id=65e0AAAAMAAJ . live .
  116. Book: United States Naval Medical Bulletin . 1942 . U.S. Government Printing Office . en . 2022-11-29 . 2024-03-31 . https://web.archive.org/web/20240331133534/https://books.google.com/books?id=bmtV2HTcZh0C . live .
  117. Book: http://history.amedd.army.mil/booksdocs/wwii/blood/chapter1.htm . https://web.archive.org/web/20060111115330/http://history.amedd.army.mil/booksdocs/wwii/blood/chapter1.htm . 11 January 2006 . Transfusion Before World War I . Kendrick DB . Blood program in world war II. . Office of the Surgeon General, Department of the Army . 1964 .
  118. Book: http://history.amedd.army.mil/booksdocs/wwii/blood/chapter7.htm . https://web.archive.org/web/20060208034909/http://history.amedd.army.mil/booksdocs/wwii/blood/chapter7.htm . 8 February 2006 . Plasma Equipment and Packaging, and Transfusion Equipment . Kendrick DB . Blood program in world war II. . Office of the Surgeon General, Department of the Army . 1964 .
  119. Boyan CP, Howland WS . Cardiac arrest and temperature of bank blood . JAMA . 183 . 58–60 . January 1963 . 14014662 . 10.1001/jama.1963.63700010027020 .
  120. Book: 978-3-540-13255-4 . Rupreht J, van Lieburg MJ, Lee JA, Erdman W . Springer-Verlag . 1985 . 99–101 . Anaesthesia: essays on its history.
  121. Sugita Y, Simon ER . The Mechanism of Action of Adenine in Red Cell Preservation . The Journal of Clinical Investigation . 44 . 4 . 629–642 . April 1965 . 14278179 . 292538 . 10.1172/JCI105176 .
  122. Simon ER, Chapman RG, Finch CA . Adenine in red cell preservation . The Journal of Clinical Investigation . 41 . 2 . 351–359 . February 1962 . 14039291 . 289233 . 10.1172/JCI104489 .
  123. News: New rules may shrink ranks of blood donors . 2007-01-10 . Landro L . Wall Street Journal . 2008-04-05 . 2009-08-04 . https://web.archive.org/web/20090804060528/http://www.post-gazette.com/pg/07010/752655-28.stm . dead .
  124. Web site: Red blood cell transfusions in newborn infants: Revised guidelines . Canadian Paediatric Society (CPS) . 2007-02-02 . dead . https://web.archive.org/web/20070203095445/http://www.cps.ca/english/statements/FN/fn02-02.htm#What%20type%20of%20RBCs%20should%20be%20used . 2007-02-03 .
  125. Reeves . Hollie M. . Goodhue Meyer . Erin . Harm . Sarah K. . Lieberman . Lani . Pyles . Ryan . Rajbhandary . Srijana . Whitaker . Barbee I. . Delaney . Meghan . Neonatal and pediatric blood bank practice in the United States: Results from the AABB pediatric transfusion medicine subsection survey . Transfusion . 61 . 8 . 2021 . 1537-2995 . 34110629 . 10.1111/trf.16520 . 2265–2276.
  126. Radhakrishnan KM, Chakravarthi S, Pushkala S, Jayaraju J . Component therapy . Indian Journal of Pediatrics . 70 . 8 . 661–666 . August 2003 . 14510088 . 10.1007/BF02724257 . 42488187 .
  127. Cherkas D . Traumatic hemorrhagic shock: advances in fluid management . Emergency Medicine Practice . 13 . 11 . 1–19; quiz 19–20 . November 2011 . 22164397 . dead . https://web.archive.org/web/20120118152838/http://www.ebmedicine.net/store.php?paction=showProduct&catid=8&pid=244 . 2012-01-18 .
  128. Meneses . Evander . Boneva . Dessy . McKenney . Mark . Elkbuli . Adel . Massive transfusion protocol in adult trauma population . The American Journal of Emergency Medicine . 38 . 12 . 2020 . 1532-8171 . 33071074 . 10.1016/j.ajem.2020.07.041 . 2661–2666.
  129. News: Caruba . Lauren . Bleeding Out: A new series exploring America's urgent health crisis . 2023-12-21 . 2023-12-21 . https://web.archive.org/web/20231221230728/https://www.dallasnews.com/news/investigations/2023/11/27/bleeding-out-a-new-series-exploring-americas-urgent-health-crisis/#:~:text=For%20more%20than%20two%20years,shootings%2C%20falls%20and%20other%20accidents. . live .
  130. News: Villalpando . Nicole . Whole blood program saves Cedar Park mom's life . 2023-12-21 . 2023-12-21 . https://web.archive.org/web/20231221230728/https://www.statesman.com/videos/news/healthcare/2023/11/09/whole-blood-program-saves-cedar-park-moms-life/71517999007/ . live .
  131. Rossaint . Rolf . Afshari . Arash . Bouillon . Bertil . Cerny . Vladimir . Cimpoesu . Diana . Curry . Nicola . Duranteau . Jacques . Filipescu . Daniela . Grottke . Oliver . Grønlykke . Lars . Harrois . Anatole . Hunt . Beverley J. . Kaserer . Alexander . Komadina . Radko . Madsen . Mikkel Herold . Maegele . Marc . Mora . Lidia . Riddez . Louis . Romero . Carolina S. . Samama . Charles-Marc . Vincent . Jean-Louis . Wiberg . Sebastian . Spahn . Donat R. . The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition . Critical Care (London, England) . 27 . 1 . 2023-03-01 . 1466-609X . 36859355 . 9977110 . 10.1186/s13054-023-04327-7 . free . 80.
  132. , which cites
  133. Book: Transfusion Medicine and Hemostasis: Clinical and Laboratory Aspects. Hillyer CD, Shaz BH, Zimring JC, Abshire TC. 2009. Elsevier. 9780080922300. 279. en. 2017-09-04. 2024-07-26. https://web.archive.org/web/20240726172745/https://books.google.com/books?id=cGBaz0hp_fcC&pg=PA279#v=onepage&q&f=false. live.
  134. Goddard AF, James MW, McIntyre AS, Scott BB . Guidelines for the management of iron deficiency anaemia . Gut . 60 . 10 . 1309–1316 . October 2011 . 21561874 . 10.1136/gut.2010.228874 . free . British Society of Gastroenterology .
  135. Shander A, Fink A, Javidroozi M, Erhard J, Farmer SL, Corwin H, Goodnough LT, Hofmann A, Isbister J, Ozawa S, Spahn DR . 6 . Appropriateness of allogeneic red blood cell transfusion: the international consensus conference on transfusion outcomes . Transfusion Medicine Reviews . 25 . 3 . 232–246.e53 . July 2011 . 21498040 . 10.1016/j.tmrv.2011.02.001 . International Consensus Conference on Transfusion Outcomes Group .
  136. Standl . T. . Haemoglobin-based erythrocyte transfusion substitutes . Expert Opinion on Biological Therapy . 1 . 5 . 2001 . 1471-2598 . 11728218 . 10.1517/14712598.1.5.831 . 831–843.
  137. Cao . Min . Zhao . Yong . He . Hongli . Yue . Ruiming . Pan . Lingai . Hu . Huan . Ren . Yingjie . Qin . Qin . Yi . Xueliang . Yin . Tao . Ma . Lina . Zhang . Dingding . Huang . Xiaobo . New Applications of HBOC-201: A 25-Year Review of the Literature . Frontiers in Medicine . 8 . 2021 . 2296-858X . 34957164 . 8692657 . 10.3389/fmed.2021.794561 . free . 794561.
  138. Zumberg . Marc . Gorlin . Jed . Griffiths . Elizabeth A. . Schwartz . Garry . Fletcher . Bradley S. . Walsh . Katherine . Dao . Kim-Hien . Vansandt . Amanda . Lynn . Mauricio . Shander . Aryeh . A case study of 10 patients administered HBOC-201 in high doses over a prolonged period: outcomes during severe anemia when transfusion is not an option . Transfusion . 60 . 5 . 2020 . 1537-2995 . 32358832 . 10.1111/trf.15778 . 932–939.
  139. Web site: Blood types . 2023-10-21 . Cornell University College of Veterinary Medicine eClinpath . 2024-07-26 . https://web.archive.org/web/20240726172733/https://eclinpath.com/hemostasis/transfusion-medicine/blood-types/ . live .
  140. Web site: Cotter . Susan M. . October 2022 . Blood Groups and Blood Transfusions in Dogs - Dog Owners . 2023-10-21 . MSD Veterinary Manual . 2023-09-29 . https://web.archive.org/web/20230929055221/https://www.msdvetmanual.com/dog-owners/blood-disorders-of-dogs/blood-groups-and-blood-transfusions-in-dogs . live .
  141. Smith . Douglas M. . Newhouse . Michael . Naziruddin . Bashoo . Kresie . Lesley . May 2006 . Blood groups and transfusions in pigs . Xenotransplantation . 13 . 3 . 186–194 . 10.1111/j.1399-3089.2006.00299.x . 16756561 . 29174596 . 0908-665X . 2023-10-21 . 2024-01-03 . https://web.archive.org/web/20240103091821/https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3089.2006.00299.x . live .
  142. Web site: 2019-02-26 . Crossmatch Testing . 2023-10-21 . . 2023-10-03 . https://web.archive.org/web/20231003002729/https://www.vet.cornell.edu/animal-health-diagnostic-center/testing/protocols/immunology/crossmatch . live .