F1
F2
z
The most common definition of bispherical coordinates
(\tau,\sigma,\phi)
\begin{align} x&=a
\sin\sigma | |
\cosh\tau-\cos\sigma |
\cos\phi,\\ y&=a
\sin\sigma | |
\cosh\tau-\cos\sigma |
\sin\phi,\\ z&=a
\sinh\tau | |
\cosh\tau-\cos\sigma |
, \end{align}
where the
\sigma
P
F1PF2
\tau
d1
d2
\tau=ln
d1 | |
d2 |
The coordinates ranges are -∞ <
\tau
\sigma
\pi
\phi
\pi
Surfaces of constant
\sigma
z2+ \left(\sqrt{x2+y2}-a\cot\sigma\right)2=
a2 | |
\sin2\sigma |
that all pass through the foci but are not concentric. The surfaces of constant
\tau
\left(x2+y2\right)+ \left(z-a\coth\tau\right)2=
a2 | |
\sinh2\tau |
that surround the foci. The centers of the constant-
\tau
z
\sigma
xy
The formulae for the inverse transformation are:
\begin{align} \sigma&=\arccos\left(\dfrac{R2-a2}{Q}\right),\\ \tau&=\operatorname{arsinh}\left(\dfrac{2az}{Q}\right),\\ \phi&=\arctan\left(\dfrac{y}{x}\right), \end{align}
where and
The scale factors for the bispherical coordinates
\sigma
\tau
h\sigma=h\tau=
a | |
\cosh\tau-\cos\sigma |
whereas the azimuthal scale factor equals
h\phi=
a\sin\sigma | |
\cosh\tau-\cos\sigma |
Thus, the infinitesimal volume element equals
dV=
a3\sin\sigma | |
\left(\cosh\tau-\cos\sigma\right)3 |
d\sigmad\taud\phi
and the Laplacian is given by
\begin{align} \nabla2\Phi=
\left(\cosh\tau-\cos\sigma\right)3 | |
a2\sin\sigma |
&\left[
\partial | |
\partial\sigma |
\left(
\sin\sigma | |
\cosh\tau-\cos\sigma |
\partial\Phi | |
\partial\sigma |
\right)\right.\\[8pt] &{} +\left. \sin\sigma
\partial | |
\partial\tau |
\left(
1 | |
\cosh\tau-\cos\sigma |
\partial\Phi | |
\partial\tau |
\right)+
1 | |
\sin\sigma\left(\cosh\tau-\cos\sigma\right) |
\partial2\Phi | |
\partial\phi2 |
\right] \end{align}
Other differential operators such as
\nabla ⋅ F
\nabla x F
(\sigma,\tau)
The classic applications of bispherical coordinates are in solving partial differential equations, e.g., Laplace's equation, for which bispherical coordinates allow a separation of variables. However, the Helmholtz equation is not separable in bispherical coordinates. A typical example would be the electric field surrounding two conducting spheres of different radii.