Bismuth polycations explained

Bismuth polycations are polyatomic ions of the formula . They were originally observed in solutions of bismuth metal in molten bismuth chloride.[1] It has since been found that these clusters are present in the solid state, particularly in salts where germanium tetrachloride or tetrachloroaluminate serve as the counteranions, but also in amorphous phases such as glasses and gels.[2] [3] [4] [5] [6] Bismuth endows materials with a variety of interesting optical properties that can be tuned by changing the supporting material.[7] [8] [9] [10] Commonly-reported structures include the trigonal bipyramidal cluster, the octahedral cluster, the square antiprismatic cluster, and the tricapped trigonal prismatic cluster.

Known materials

Crystalline

Metal complexes

Structure and bonding

Bismuth polycations form despite the fact that they possess fewer total valence electrons than would seem necessary for the number of sigma bonds. The shapes of these clusters are generally dictated by Wade's rules, which are based on the treatment of the electronic structure as delocalized molecular orbitals. The bonding can also be described with three-center two-electron bonds in some cases, such as the cluster.Bismuth clusters have been observed to act as ligands for copper[14] and ruthenium[15] ions. This behavior is possible due to the otherwise fairly inert lone pairs on each of the bismuth that arise primarily from the s-orbitals left out of Bi–Bi bonding.

Optical properties

The variety of electron-deficient sigma aromatic clusters formed by bismuth gives rise to a wide range of spectroscopic behaviors. Of particular interest are the systems capable of low-energy electronic transitions, as these have demonstrated potential as near-infrared light emitters. It is the tendency of electron-deficient bismuth to form sigma-delocalized clusters with small HOMO/LUMO gaps that gives rise to the near-infrared emissions. This property makes these species potentially valuable to the field of near-infrared optical tomography, which exploits the near-infrared window in biological tissue.

Notes and References

  1. Day. Graeme. Glaser. Rainer. Shimomura. Noriyuki. Takamuku. Atsushi. Ichikawa. Kazuhiko. 2000-03-17. Electronic Excitations in Homopolyatomic Bismuth Cations: Spectroscopic Measurements in Molten Salts and an ab initio CI-Singles Study. Chemistry – A European Journal. en. 6. 6. 1078–1086. 10.1002/(sici)1521-3765(20000317)6:6<1078::aid-chem1078>3.0.co;2-r. 10785828 . 1521-3765.
  2. Fujimoto. Yasushi. Nakatsuka. Masahiro. March 2001. Infrared Luminescence from Bismuth-Doped Silica Glass. Japanese Journal of Applied Physics. en. 40. Part 2, No. 3B. L279–L281. 10.1143/jjap.40.l279. 1347-4065. 2001JaJAP..40L.279F. 250811099 .
  3. Dianov. Evgenii M.. Dvoyrin. V. V.. Mashinsky. V. M.. Umnikov. A. A.. Yashkov. M. V.. Gur'yanov. A. N.. CW bismuth fibre laser. Quantum Electronics. 35. 12. 1083–1084. 10.1070/qe2005v035n12abeh013092. 2005QuEle..35.1083D. 2005. 250774487 .
  4. Zhou. Shifeng. Jiang. Nan. Zhu. Bin. Yang. Hucheng. Ye. Song. Lakshminarayana. Gandham. Hao. Jianhua. Qiu. Jianrong. 2008-05-09. Multifunctional Bismuth-Doped Nanoporous Silica Glass: From Blue-Green, Orange, Red, and White Light Sources to Ultra-Broadband Infrared Amplifiers. Advanced Functional Materials. en. 18. 9. 1407–1413. 10.1002/adfm.200701290. 1616-3028. 10397/21390. 136501137 . free.
  5. Razdobreev. Igor. El Hamzaoui. Hicham. Bouwmans. Géraud. Bouazaoui. Mohamed. Arion. Vladimir B.. 2012-02-01. Photoluminescence of sol-gel silica fiber preform doped with Bismuth-containing heterotrinuclear complex. Optical Materials Express. EN. 2. 2. 205–213. 10.1364/ome.2.000205. 2012OMExp...2..205R . 2159-3930. free.
  6. Sun. Hong-Tao. Yang. Junjie. Fujii. Minoru. Sakka. Yoshio. Zhu. Yufang. Asahara. Takayuki. Shirahata. Naoto. Ii. Masaaki. Bai. Zhenhua. 2011-01-17. Highly Fluorescent Silica-Coated Bismuth-Doped Aluminosilicate Nanoparticles for Near-Infrared Bioimaging. Small. en. 7. 2. 199–203. 10.1002/smll.201001011. 21213381. 1613-6829.
  7. Cao. Renping. Peng. Mingying. Zheng. Jiayu. Qiu. Jianrong. Zhang. Qinyuan. 2012-07-30. Superbroad near to mid infrared luminescence from closo-deltahedral cluster in Bi5(GaCl4)3. Optics Express. EN. 20. 16. 18505–18514. 10.1364/oe.20.018505. 23038400. 1094-4087. 2012OExpr..2018505C. free.
  8. Sun. Hong-Tao. Xu. Beibei. Yonezawa. Tetsu. Sakka. Yoshio. Shirahata. Naoto. Fujii. Minoru. Qiu. Jianrong. Gao. Hong. 2012-08-28. Photoluminescence from Bi5(GaCl4)3 molecular crystal. Dalton Transactions. en. 41. 36. 11055–61. 10.1039/c2dt31167d. 22864825. 1477-9234. 1205.6889. 19202220 .
  9. Sun. Hong-Tao. Sakka. Yoshio. Shirahata. Naoto. Gao. Hong. Yonezawa. Tetsu. 2012-06-06. Experimental and theoretical studies of photoluminescence from and stabilized by [AlCl<sub>4</sub>] in molecular crystals. Journal of Materials Chemistry. en. 22. 25. 12837. 10.1039/c2jm30251a. 1364-5501. 1202.5395. 95074461 .
  10. Sun. Hong-Tao. Zhou. Jiajia. Qiu. Jianrong. Recent advances in bismuth activated photonic materials. Progress in Materials Science. 64. 1–72. 10.1016/j.pmatsci.2014.02.002. 2014.
  11. Lindsjö. Andreas Fischer, Martin. Kloo. Lars. 2005-02-01. Improvements of and Insights into the Isolation of Bismuth Polycations from Benzene Solution – Single-Crystal Structure Determinations of Bi8[GaCl<sub>4</sub>]2 and Bi5[GaCl<sub>4</sub>]3. European Journal of Inorganic Chemistry. en. 2005. 4. 670–675. 10.1002/ejic.200400466. 1099-0682.
  12. Kou. C. Y.. Zhuang. L.. Wang. G. Q.. Cui. H.. Yuan. H. K.. Tian. C. L.. Wang. J. Z.. Chen. H.. 2015-10-27. [TM<sub>13</sub>@Bi<sub>20</sub>] clusters in three-shell icosahedral matryoshka structure: being as superatoms. RSC Advances. en. 5. 112. 92134–92143. 10.1039/c5ra19194g. 2015RSCAd...592134K . 2046-2069.
  13. Groh. Matthias F.. Isaeva. Anna. Frey. Christoph. Ruck. Michael. 2013-11-01. [Ru(Bi<sub>8</sub>)<sub>2</sub>]6+ – A Cluster in a Highly Disordered Crystal Structure is the Key to the Understanding of the Coordination Chemistry of Bismuth Polycations. Zeitschrift für Anorganische und Allgemeine Chemie. en. 639. 14. 2401–2405. 10.1002/zaac.201300377. 1521-3749.
  14. Knies. Maximilian. Kaiser. Martin. Isaeva. Anna. Müller. Ulrike. Doert. Thomas. Ruck. Michael. The Intermetalloid Cluster Cation (CuBi8)3+. Chemistry – A European Journal. 24. 1. en. 127–132. 10.1002/chem.201703916. 28977714. 1521-3765. 2018.
  15. Groh. Matthias F.. Isaeva. Anna. Frey. Christoph. Ruck. Michael. 2013-11-01. [Ru(Bi<sub>8</sub>)<sub>2</sub>]6+ – A Cluster in a Highly Disordered Crystal Structure is the Key to the Understanding of the Coordination Chemistry of Bismuth Polycations. Zeitschrift für Anorganische und Allgemeine Chemie. en. 639. 14. 2401–2405. 10.1002/zaac.201300377. 1521-3749.