Bismuth-209 Explained

Mass Number:209
Symbol:Bi
Num Neutrons:126
Num Protons:83
Abundance:100%
Mass:208.9803986
Spin:9/2−
Decay Energy1:3.1373
Decay Product:thallium-205
Decay Symbol:Tl
Decay Mass:205
Parent:lead-209
Parent Symbol:Pb
Parent Mass:209
Parent Decay:b
Parent2:polonium-209
Parent2 Symbol:Po
Parent2 Mass:209
Parent2 Decay:b+
Parent3:astatine-213
Parent3 Symbol:At
Parent3 Mass:213
Parent3 Decay:a

Bismuth-209 (Bi) is an isotope of bismuth, with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons,[1] and an atomic mass of 208.9803987 amu (atomic mass units). Primordial bismuth consists entirely of this isotope.

Decay properties

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at the Institut d’Astrophysique Spatiale in Orsay, France, discovered that Bi undergoes alpha decay with a half-life of ≈19 exayears (1.9×10, or 19 quintillion years), over 10 times longer than the estimated age of the universe.[2] The heaviest nucleus considered to be stable is now lead-208 and the heaviest stable monoisotopic element is gold (gold-197).

Theory had previously predicted a half-life of 4.6 years. It had been suspected to be radioactive for a long time.[3] The decay produces a 3.14 MeV alpha particle plus thallium-205.[4] [5]

Bismuth-209 forms Tl:

→ + [6]

If perturbed, it would join in lead-bismuth neutron capture cycle from lead-206/207/208 to bismuth-209, despite low capture cross sections. Even thallium-205, the decay product of bismuth-209, reverts to lead when fully ionized.[7]

Due to its hugely long half-life, for nearly all applications Bi can be treated as non-radioactive. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs to tellurium-128 (Te) with a half-life estimated at 7.7 × 10 years by double β-decay (double beta decay).[8] [9] [10]

The half-life of Bi was confirmed in 2012 by an Italian team in Gran Sasso who reported years. They also reported an even longer half-life for alpha decay of Bi to the first excited state of Tl (at 204 keV), was estimated at 1.66 years.[11] Even though this value is shorter than the half-life of Te, both alpha decays of Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ~5.5×10 eV and ΔΕ~1.3×10 eV in application of the uncertainty principle[12] (double beta decay would produce energy lines only in neutrinoless transitions, which has not been observed yet).

Applications

Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement for lead,[13] [14] in cosmetics,[15] [16] in paints,[17] and in several medicines such as Pepto-Bismol.[18] [19] Alloys containing bismuth-209 such as bismuth bronze have been used for thousands of years.[20]

Synthesis of other elements

Po can be manufactured by bombarding Bi with neutrons in a nuclear reactor. Only around 100 grams of Po are produced each year.[21] [22] Po and Po can be made through the proton bombardment of Bi in a cyclotron.[23] Astatine can also be produced by bombarding Bi with alpha particles.[24] [25] [26] Traces of Bi have also been used to create gold in nuclear reactors.[27] [28]

Bi has been used as a target for the creation of several isotopes of superheavy elements such as dubnium,[29] [30] [31] [32] bohrium,[33] meitnerium,[34] [35] [36] roentgenium,[37] [38] [39] and nihonium.[40] [41] [42]

Formation

Primordial

In the red giant stars of the asymptotic giant branch, the s-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed, and the latter quickly decays. All elements heavier than it are formed in the r-process, or rapid process, which occurs during the first fifteen minutes of supernovas.[43] [44] Bismuth-209 is also created during the r-process.

Radiogenic

Some Bi was created radiogenically from the neptunium decay chain.[45] Neptunium-237 is an extinct radionuclide, but it can be found in traces in uranium ores because of neutron capture reactions.[46] Americium-241, which is used in smoke detectors,[47] decays to neptunium-237.

See also

Notes and References

  1. Magic and doubly-magic nuclei . Blank . B. . Regan . P.H. . Nuclear Physics News . 2000 . 10 . 4 . 20–27 . 10.1080/10506890109411553. 121966707 .
  2. Book: Kean, Sam. The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). Back Bay Books . New York/Boston. 2011. 158–160. 978-0-316-051637.
  3. 10.1007/BF02824346 . Alpha-activity of . 1972 . Carvalho . H. G. . Penna . M. . Lettere al Nuovo Cimento . 3 . 18. 720. 120952231 .
  4. News: Bismuth breaks half-life record for alpha decay. 2003-04-23. Physicsweb. Belle. Dumé.
  5. Marcillac . Pierre de . Noël Coron . Gérard Dambier . Jacques Leblanc . Jean-Pierre Moalic . April 2003 . Experimental detection of α-particles from the radioactive decay of natural bismuth . Nature . 422 . 876–878 . 10.1038/nature01541 . 12712201 . 6934 . 2003Natur.422..876D. 4415582 .
  6. Web site: Isotope data for americium-241 in the Periodic Table.
  7. Bound-state beta decay of highly ionized atoms. Takahashi. K. Boyd. R. N.. Mathews. G. J.. Yokoi. K.. October 1987. 2016-11-20. 0556-2813. 1639677. 36. 4. 1522–1528. Physical Review C. 10.1103/PhysRevC.36.1522. 9954244. 1987PhRvC..36.1522T.
  8. Web site: Noble Gas Research . 2013-01-10 . dead . https://web.archive.org/web/20110928143717/http://presolar.wustl.edu/work/noblegas.html . 2011-09-28 . Tellurium-128 information and half-life. Accessed July 14, 2009.
  9. Audi. G.. The NUBASE Evaluation of Nuclear and Decay Properties. Nuclear Physics A. 729. 1. 3–128. Atomic Mass Data Center. 2003. 10.1016/j.nuclphysa.2003.11.001. 2003NuPhA.729....3A. Bersillon. O.. Blachot. J.. Wapstra. A. H..
  10. Web site: WWW Table of Radioactive Isotopes: Tellurium. Nuclear Science Division, Lawrence Berkeley National Laboratory. 2008. 2010-01-16. https://web.archive.org/web/20100205101344/http://ie.lbl.gov/toi/nuclide.asp?iZA=520128. 2010-02-05. dead.
  11. J.W. Beeman. et al. 2012. First Measurement of the Partial Widths of Bi Decay to the Ground and to the First Excited States. Physical Review Letters . 108 . 6 . 062501. 10.1103/PhysRevLett.108.062501. 22401058. 1110.3138. 2012PhRvL.108f2501B . 118686992 .
  12. Web site: Particle lifetimes from the uncertainty principle.
  13. Hopper KD. King SH. Lobell ME. TenHave TR. Weaver JS. The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments. 9393547. 1997. 205. 3. 853–8. Radiology. 10.1148/radiology.205.3.9393547.
  14. Web site: Joachim . Lohse. Stéphanie . Zangl. Rita. Groß. Carl-Otto. Gensch. Otmar. Deubzer. Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC. 11 September 2009. European Commission. September 2007.
  15. 10.1016/j.porgcoat.2005.07.003. Effect pigments—past, present and future. 2005. Maile. Frank J.. Pfaff. Gerhard. Reynders. Peter. Progress in Organic Coatings. 54. 3. 150.
  16. Book: Special effect pigments: Technical basics and applications. 36. 978-3-86630-905-0. Pfaff. Gerhard. 2008. Vincentz Network GmbH.
  17. B. Gunter "Inorganic Colored Pigments” in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  18. Madisch A, Morgner A, Stolte M, Miehlke S . December 2008 . Investigational treatment options in microscopic colitis . Expert Opinion on Investigational Drugs . 19012499 . 10.1517/13543780802514500 . 17 . 12 . 1829–37. 72294495 .
  19. Merck Index, 11th Edition, 1299
  20. 1692247 . Bismuth Bronze from Machu Picchu, Peru . American Association for the Advancement of Science . Gordon . Robert B. . Rutledge . John W. . Science . 1984 . 223 . 4636 . 585–586 . 10.1126/science.223.4636.585 . 17749940 . 1984Sci...223..585G . 206572055 .
  21. Web site: Swiss study: Polonium found in Arafat's bones . Al Jazeera. 2013-11-07.
  22. Roessler . G. . Why Po? . Health Physics News . . 2007 . 35 . 2 . 2019-06-20 . https://web.archive.org/web/20140403100938/http://hps.org/documents/polonium_210_story.pdf . 2014-04-03 . live .
  23. Book: Carvalho. F.. Fernandes. S.. Fesenko. S. . Holm. E.. Howard. B.. Martin. P.. Phaneuf. P. . Porcelli. D.. Pröhl. G.. Twining. J.. The Environmental Behaviour of Polonium. Technical reports series. 484. International Atomic Energy Agency. Vienna. 2017. 22. 0074-1914. 978-92-0-112116-5.
  24. Radioactivity of Astatine Isotopes . G. W. . Barton. 1951 . Physical Review . 82 . 1 . 13–19 . 10.1103/PhysRev.82.13 . Ghiorso . A.. Albert Ghiorso . Perlman . I.. 1951PhRv...82...13B . 2027/mdp.39015086480574 .
  25. Larsen. R. H.. Wieland. B. W.. Zalutsky. M. R. J.. 1996. Evaluation of an Internal Cyclotron Target for the Production of At via the Bi (α,2n)At reaction. Applied Radiation and Isotopes. 47. 2. 135–143. 10.1016/0969-8043(95)00285-5. 8852627.
  26. 10.1070/RC1968v037n02ABEH001603 . Astatine . 1968 . Nefedov . V. D. . Russian Chemical Reviews . 37 . 87–98 . Norseev . Yu. V. . Toropova . M. A. . Khalkin . Vladimir A. . 2. 1968RuCRv..37...87N . 250775410 .
  27. Aleklett . K. . Morrissey . D. . Loveland . W. . McGaughey . P. . Seaborg . G. . 1981 . Energy dependence of Bi fragmentation in relativistic nuclear collisions . . 23 . 3 . 1044 . 1981PhRvC..23.1044A . 10.1103/PhysRevC.23.1044.
  28. News: The Philosopher's Stone . . Robert . Matthews . 2 December 2001 . 22 September 2020 .
  29. Identification of element 107 by α correlation chains. Munzenberg. Z. Phys. A. 300. 1. 107–108. 1981. 10.1007/BF01412623. Hofmann. S.. Heßberger. F. P.. Reisdorf. W.. Schmidt. K. H.. Schneider. J. H. R.. Armbruster. P.. Sahm. C. C.. Thuma. B.. 1981ZPhyA.300..107M. 118312056.
  30. 10.1007/BF01415134. The new isotopes 105,105,Lr and Lr. Hessberger . F. P. . Z. Phys. A. 1985. 322. 4. 4. Münzenberg. G.. Hofmann. S.. Agarwal. Y. K.. Poppensieker. K.. Reisdorf. W.. Schmidt. K.-H.. Schneider. J. R. H.. Schneider. W. F. W.. Schött. H. J.. Armbruster. P.. Thuma. B.. Sahm. C.-C.. Vermeulen. D.. 1985ZPhyA.322..557H. 100784990.
  31. Decay properties of neutron-deficient isotopes Db,Rf, Lr. https://web.archive.org/web/20020510050652/http://www.edpsciences.org/articles/epja/abs/2001/09/epja1103/epja1103.html. dead. 2002-05-10. F. P. Hessberger. Eur. Phys. J. A. 12. 1. 57–67. 2001. 10.1007/s100500170039. Hofmann. S.. Ackermann. D.. Ninov. V.. Leino. M.. Münzenberg. G.. Saro. S.. Lavrentev. A.. Popeko. A.G.. Yeremin. A.V.. Stodel. Ch.. 2001EPJA...12...57H. 117896888.
  32. Leppänen . A.-P. . Alpha-decay and decay-tagging studies of heavy elements using the RITU separator . 2005 . 83–100 . University of Jyväskylä . 978-951-39-3162-9 . 0075-465X .
  33. Nelson. S.. Gregorich. K.. Dragojević. I.. Garcia. M.. Gates. J.. Sudowe. R.. Nitsche. H.. Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction. Physical Review Letters. 100. 2008. 10.1103/PhysRevLett.100.022501. 2. 22501. 2008PhRvL.100b2501N. 18232860. 1242390 .
  34. Münzenberg . G. . 1982 . Observation of one correlated α-decay in the reaction Fe on Bi→109 . . 309 . 1 . 89–90 . 1982ZPhyA.309...89M . 10.1007/BF01420157. 120062541 . etal.
  35. Münzenberg. G.. Hofmann. S.. Heßberger. F. P.. Folger. H.. Ninov. V.. Poppensieker. K.. New results on element 109. 1988. Zeitschrift für Physik A . 330. 4. 435–436. 10.1007/BF01290131. 1988ZPhyA.330..435M. 3. Quint. A. B.. Reisdorf. W.. Schött. H. -J.. 121364541.
  36. Hofmann . S. . Heßberger . F. P. . Ninov . V. . Armbruster . P. . Münzenberg . G. . Stodel . C. . Popeko . A. G. . Yeremin . A. V. . Saro . S.. Excitation function for the production of 108 and 109 . 1997 . Zeitschrift für Physik A . 358 . 4 . 377–378 . 10.1007/s002180050343 . 1997ZPhyA.358..377H . 124304673 . 3.
  37. 10.1007/BF01291182 . The new element 111 . 1995 . Hofmann . S. . Zeitschrift für Physik A . 350 . 281–282 . Ninov . V. . Heßberger . F. P. . Armbruster . P. . Folger . H. . Münzenberg . G. . Schött . H. J. . Popeko . A. G. . Yeremin . A. V. . Andreyev . A. N. . Saro . S. . Janik . R. . Leino . M. . 1995ZPhyA.350..281H . 4 . 18804192 . 8.
  38. 10.1140/epja/i2001-10119-x . New results on elements 111 and 112 . 2002 . Hofmann . S. . The European Physical Journal A . 14 . 147–157 . Heßberger . F. P. . Ackermann . D. . Münzenberg . G. . Antalic . S. . Cagarda . P. . Kindler . B. . Kojouharova . J. . Leino . M. . Lommel . B. . Mann . R. . Popeko . A.G. . Reshitko . S. . Śaro . S. . Uusitalo . J. . Yeremin . A.V. . 2 . 8. 2002EPJA...14..147H . 8773326 .
  39. Morita . K. . Morimoto . K. K. . Kaji . D. . Goto . S. . Haba . H. . Ideguchi . E. . Kanungo . R. . Katori . K. . Koura . H. . Kudo . H. . Ohnishi . T. . Ozawa . A. . Peter . J. C. . Suda . T. . Sueki . K. . Tanihata . I. . Tokanai . F. . Xu . H. . Yeremin . A. V. . Yoneda . A. . Yoshida . A. . Zhao . Y.-L. . Zheng . T. . Status of heavy element research using GARIS at RIKEN . 2004 . Nuclear Physics A . 734 . 101–108 . 10.1016/j.nuclphysa.2004.01.019. 2004NuPhA.734..101M .
  40. Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn, n)113. 10.1143/JPSJ.73.2593. 2004. Morita . Kosuke . Journal of the Physical Society of Japan . 73 . 2593–2596 . Morimoto . Kouji . Kaji . Daiya . Akiyama . Takahiro . Goto . Sin-Ichi . Haba . Hiromitsu . Ideguchi . Eiji . Kanungo . Rituparna . Katori . Kenji . Koura . Hiroyuki . Kudo . Hisaaki . Ohnishi . Tetsuya . Ozawa . Akira . Suda . Toshimi . Sueki . Keisuke . Xu . Hushan . Yamaguchi . Takayuki . Yoneda . Akira . Yoshida . Atsushi . Zhao . Yuliang . 8 . 10 . 2004JPSJ...73.2593M .
  41. Barber . Robert C. . Karol . Paul J . Nakahara . Hiromichi . Vardaci . Emanuele . Vogt . Erich W. . Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report). 10.1351/PAC-REP-10-05-01 . Pure and Applied Chemistry . 2011 . 83. 7 . 1485. free .
  42. Journal of the Physical Society of Japan. 81. 103201 . 2012. New Results in the Production and Decay of an Isotope, 113, of the 113th Element. K. Morita. 10.1143/JPSJ.81.103201. Morimoto. Kouji. Kaji. Daiya. Haba. Hiromitsu. Ozeki. Kazutaka. Kudou. Yuki. Sumita. Takayuki. Wakabayashi. Yasuo. Yoneda. Akira. Kengo . Tanaka. Sayaka . Yamaki. Ryutaro . Sakai. Takahiro . Akiyama. Shin-ichi . Goto. Hiroo . Hasebe. Minghui . Huang. Tianheng . Huang. Eiji . Ideguchi. Yoshitaka . Kasamatsu. Kenji . Katori. Yoshiki . Kariya. Hidetoshi . Kikunaga. Hiroyuki . Koura. Hisaaki . Kudo. Akihiro . Mashiko. Keita . Mayama. Shin-ichi . Mitsuoka. Toru . Moriya. Masashi . Murakami. Hirohumi . Murayama. Saori . Namai. Akira . Ozawa. Nozomi . Sato. Keisuke . Sueki. Mirei . Takeyama. Fuyuki . Tokanai. Takayuki . Yamaguchi. Atsushi . Yoshida. 10. 10. 1209.6431 . 2012JPSJ...81j3201M . 119217928 .
  43. Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.
  44. Burbidge . E. M. . Burbidge . G. R. . Fowler . W. A. . Hoyle . F. . 1957 . Synthesis of the Elements in Stars . . 29 . 4 . 547–650 . 1957RvMP...29..547B . 10.1103/RevModPhys.29.547 . free.
  45. Peppard . D. F. . Mason . G. W. . Gray . P. R. . Mech . J. F. . Occurrence of the (4n + 1) series in nature . Journal of the American Chemical Society . 1952 . 74 . 23 . 6081–6084 . 10.1021/ja01143a074 .
  46. Book: C. R. Hammond. The Elements, in Handbook of Chemistry and Physics. 81st. CRC press. 978-0-8493-0485-9. 2004. registration.
  47. Smoke Detectors and Americium . https://web.archive.org/web/20080303223058/http://www.uic.com.au/nip35.htm . 2008-03-03 . usurped . Nuclear Issues Briefing Paper . . 35 . May 2002 . en-au . 2022-09-02 . dmy-all .