Birth process explained

In probability theory, a birth process or a pure birth process is a special case of a continuous-time Markov process and a generalisation of a Poisson process. It defines a continuous process which takes values in the natural numbers and can only increase by one (a "birth") or remain unchanged. This is a type of birth–death process with no deaths. The rate at which births occur is given by an exponential random variable whose parameter depends only on the current value of the process

Definition

Birth rates definition

A birth process with birth rates

(λn,n\inN)

and initial value

k\inN

is a minimal right-continuous process

(Xt,t\ge0)

such that

X0=k

and the interarrival times

Ti=inf\{t\ge0:Xt=i+1\}-inf\{t\ge0:Xt=i\}

are independent exponential random variables with parameter

λi

.

Infinitesimal definition

A birth process with rates

(λn,n\inN)

and initial value

k\inN

is a process

(Xt,t\ge0)

such that:

X0=k

\foralls,t\ge0:s<t\impliesXs\leXt

P(Xt+h=Xt+1)

Xt

h+o(h)

P(Xt+h=Xt)=o(h)

\foralls,t\ge0:s<t\impliesXt-Xs

is independent of

(Xu,u<s)

(The third and fourth conditions use little o notation.)

These conditions ensure that the process starts at

i

, is non-decreasing and has independent single births continuously at rate

λn

, when the process has value

n

.

Continuous-time Markov chain definition

A birth process can be defined as a continuous-time Markov process (CTMC)

(Xt,t\ge0)

with the non-zero Q-matrix entries

qn,n+1n=-qn,n

and initial distribution

i

(the random variable which takes value

i

with probability 1).

Q=\begin{pmatrix} 0&λ0&0&0&\\ 0&1&λ1&0&\\ 0&0&2&λ2&\\ \vdots&\vdots&\vdots&&\vdots\ddots \end{pmatrix}

Variations

Some authors require that a birth process start from 0 i.e. that

X0=0

, while others allow the initial value to be given by a probability distribution on the natural numbers. The state space can include infinity, in the case of an explosive birth process. The birth rates are also called intensities.

Properties

As for CTMCs, a birth process has the Markov property. The CTMC definitions for communicating classes, irreducibility and so on apply to birth processes. By the conditions for recurrence and transience of a birth–death process, any birth process is transient. The transition matrices

((pi,j(t))i,j\inN),t\ge0)

of a birth process satisfy the Kolmogorov forward and backward equations.

The backwards equations are:

p'i,j(t)i(pi+1,j(t)-pi,j(t))

(for

i,j\inN

)

The forward equations are:

p'i,i(t)=-λipi,i(t)

(for

i\inN

)

p'i,j(t)j-1pi,j-1(t)jpi,j(t)

(for

j\gei+1

)

From the forward equations it follows that:

pi,i

it
(t)=e
(for

i\inN

)

pi,j(t)j-1

jt
e
t
\int
0
λjs
e

pi,j-1(s)ds

(for

j\gei+1

)

Unlike a Poisson process, a birth process may have infinitely many births in a finite amount of time. We define

Tinfty=\sup\{Tn:n\inN\}

and say that a birth process explodes if

Tinfty

is finite. If
infty
\sum
n=0
1
λn

<infty

then the process is explosive with probability 1; otherwise, it is non-explosive with probability 1 ("honest").

Examples

A Poisson process is a birth process where the birth rates are constant i.e.

λn

for some

λ>0

.

Simple birth process

A simple birth process is a birth process with rates

λn=nλ

. It models a population in which each individual gives birth repeatedly and independently at rate

λ

. Udny Yule studied the processes, so they may be known as Yule processes.

The number of births in time

t

from a simple birth process of population

n

is given by:

pn,n+m(t)=\binom{n}{m}(λt)m(1-λt)n-m+o(h)

In exact form, the number of births is the negative binomial distribution with parameters

n

and

e

. For the special case

n=1

, this is the geometric distribution with success rate

e

.

The expectation of the process grows exponentially; specifically, if

X0=1

then
λt
E(X
t)=e
.

A simple birth process with immigration is a modification of this process with rates

λn=nλ+\nu

. This models a population with births by each population member in addition to a constant rate of immigration into the system.

References