In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1]) is an absolutely continuous probability distribution. If
p\in[0,1]
p | |
1-p |
Beta prime distribution is defined for
x>0
f(x)=
x\alpha-1(1+x)-\alpha | |
B(\alpha,\beta) |
where B is the Beta function.
The cumulative distribution function is
F(x;
\alpha,\beta)=I | ||||
|
\left(\alpha,\beta\right),
where I is the regularized incomplete beta function.
The expected value, variance, and other details of the distribution are given in the sidebox; for
\beta>4
\gamma2=6
\alpha(\alpha+\beta-1)(5\beta-11)+(\beta-1)2(\beta-2) | |
\alpha(\alpha+\beta-1)(\beta-3)(\beta-4) |
.
While the related beta distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed as a probability, the beta prime distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed in odds. The distribution is a Pearson type VI distribution.[1]
The mode of a variate X distributed as
\beta'(\alpha,\beta)
\hat{X}=
\alpha-1 | |
\beta+1 |
\alpha | |
\beta-1 |
\beta>1
\beta\leq1
\alpha(\alpha+\beta-1) | |
(\beta-2)(\beta-1)2 |
\beta>2
For
-\alpha<k<\beta
E[Xk]
| ||||
E[X |
.
For
k\inN
k<\beta,
k | |
E[X | |
i=1 |
\alpha+i-1 | |
\beta-i |
.
The cdf can also be written as
x\alpha ⋅ { | |
2F |
1(\alpha,\alpha+\beta,\alpha+1,-x)}{\alpha ⋅ B(\alpha,\beta)}
where
{}2F1
The beta prime distribution may also be reparameterized in terms of its mean μ > 0 and precision ν > 0 parameters ([2] p. 36).
Consider the parameterization μ = α/(β-1) and ν = β- 2, i.e., α = μ(1 + ν) andβ = 2 + ν. Under this parameterizationE[Y] = μ and Var[Y] = μ(1 + μ)/ν.
Two more parameters can be added to form the generalized beta prime distribution
\beta'(\alpha,\beta,p,q)
p>0
q>0
having the probability density function:
f(x;\alpha,\beta,p,q)=
| |||||||||
qB(\alpha,\beta) |
with mean
q\Gamma\left(\alpha+\tfrac1p\right)\Gamma(\beta-\tfrac1p) | |
\Gamma(\alpha)\Gamma(\beta) |
if\betap>1
and mode
q\left({
\alphap-1 | |
\betap+1 |
Note that if p = q = 1 then the generalized beta prime distribution reduces to the standard beta prime distribution.
This generalization can be obtained via the following invertible transformation. If
y\sim\beta'(\alpha,\beta)
x=qy1/p
q,p>0
x\sim\beta'(\alpha,\beta,p,q)
The compound gamma distribution[3] is the generalization of the beta prime when the scale parameter, q is added, but where p = 1. It is so named because it is formed by compounding two gamma distributions:
\beta'(x;\alpha,\beta,1,q)=
infty | |
\int | |
0 |
G(x;\alpha,r)G(r;\beta,q) dr
where
G(x;a,b)
a
b
The mode, mean and variance of the compound gamma can be obtained by multiplying the mode and mean in the above infobox by q and the variance by q2.
Another way to express the compounding is if
r\simG(\beta,q)
x\midr\simG(\alpha,r)
x\sim\beta'(\alpha,\beta,1,q)
X\sim\beta'(\alpha,\beta)
\tfrac{1}{X}\sim\beta'(\beta,\alpha)
Y\sim\beta'(\alpha,\beta)
X=qY1/p
X\sim\beta'(\alpha,\beta,p,q)
X\sim\beta'(\alpha,\beta,p,q)
kX\sim\beta'(\alpha,\beta,p,kq)
\beta'(\alpha,\beta,1,1)=\beta'(\alpha,\beta)
X1\sim\beta'(\alpha,\beta)
X2\sim\beta'(\alpha,\beta)
Y=X1+X2\sim\beta'(\gamma,\delta)
\gamma= | 2\alpha(\alpha+\beta2-2\beta+2\alpha\beta-4\alpha+1) |
(\beta-1)(\alpha+\beta-1) |
\delta=
2\alpha+\beta2-\beta+2\alpha\beta-4\alpha | |
\alpha+\beta-1 |
X1,...,Xnn
\foralli,1\leqi\leqn,Xi\sim\beta'(\alpha,\beta)
S=X1+...+Xn\sim\beta'(\gamma,\delta)
\gamma= | n\alpha(\alpha+\beta2-2\beta+n\alpha\beta-2n\alpha+1) |
(\beta-1)(\alpha+\beta-1) |
\delta=
2\alpha+\beta2-\beta+n\alpha\beta-2n\alpha | |
\alpha+\beta-1 |
X\simF(2\alpha,2\beta)
\tfrac{\alpha}{\beta}X\sim\beta'(\alpha,\beta)
X\sim\beta'(\alpha,\beta,1,\tfrac{\beta}{\alpha})
X\simrm{Beta}(\alpha,\beta)
X | |
1-X |
\sim\beta'(\alpha,\beta)
X\sim\beta'(\alpha,\beta)
X | |
1+X |
\simrm{Beta}(\alpha,\beta)
Xk\sim\Gamma(\alphak,\thetak)
\tfrac{X1}{X2}\sim\beta'(\alpha1,\alpha2,1,\tfrac{\theta1}{\theta2})
\alpha1,\alpha2,\tfrac{\theta1}{\theta2}
Xk\sim\Gamma(\alphak,\betak)
\tfrac{X1}{X2}\sim\beta'(\alpha1,\alpha2,1,\tfrac{\beta2}{\beta1})
\betak
\tfrac{\beta2}{\beta1}
\beta2\sim\Gamma(\alpha1,\beta1)
X2\mid\beta2\sim\Gamma(\alpha2,\beta2)
X2\sim\beta'(\alpha2,\alpha1,1,\beta1)
\betak
\beta1
\beta'(p,1,a,b)=rm{Dagum}(p,a,b)
\beta'(1,p,a,b)=rm{SinghMaddala}(p,a,b)
\beta'(1,1,\gamma,\sigma)=rm{LL}(\gamma,\sigma)
xm
\alpha
\prime(1,\alpha) | |
\dfrac{X}{x | |
m}-1\sim\beta |
\alpha
λ
X | |
λ |
\sim\beta\prime(1,\alpha)
\alpha
\gamma
| ||||
X |
\sim\beta\prime(1,\alpha)
X\sim\beta\prime(1,\alpha,\tfrac{1}{\gamma},1)
X\sim\beta'(\alpha,\beta)
lnX
X\sim\beta'(\alpha,\beta,p,q)
lnX