Caryophyllene Explained
Caryophyllene, more formally (−)-β-caryophyllene (BCP), is a natural bicyclic sesquiterpene that is a constituent of many essential oils, especially clove oil, the oil from the stems and flowers of Syzygium aromaticum (cloves),[1] the essential oil of Cannabis sativa, copaiba, rosemary, and hops.[2] It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. Caryophyllene is notable for having a cyclobutane ring, as well as a trans-double bond in a 9-membered ring, both rarities in nature.
Caryophyllene is one of the chemical compounds that contributes to the aroma of black pepper.[3]
Pharmacology
β-Caryophyllene acts as a full agonist of the cannabinoid receptor type 2 (CB2 receptor) in rats.[4] β-Caryophyllene has a binding affinity of Ki = 155 nM at the CB2 receptors in mice.[5] β-Caryophyllene has been shown to have anti-inflammatory action linked to its CB2 receptor activity in a study comparing the pain killing effects in mice with and without CB2 receptors with the group of mice without CB2 receptors seeing little benefit compared to the mice with functional CB2 receptors.[4] β-Caryophyllene has the highest cannabinoid activity compared to the ring opened isomer α-caryophyllene humulene which may modulate CB2 activity.[6] To compare binding, cannabinol (CBN) binds to the CB2 receptors as a partial agonist with an affinity of Ki = 126.4 nM,[7] while delta-9-tetrahydrocannabinol binds to the CB2 receptors as a partial agonist with an affinity of Ki = 36 nM.[8]
Caryophyllene helps to improve cold tolerance at low ambient temperatures. Wild giant pandas frequently roll in horse manure, which contains β-caryophyllene/caryophyllene oxide, to inhibit transient receptor potential melastatin 8 (TRPM8), an archetypical cold-activated ion channel of mammals.[9]
In an in vitro human colorectal adenocarcinoma study, β-caryophyllene used alone did not inhibit cancer cell growth, but a combination of β-caryophyllene 10 μg/mL and paclitaxel 0.025 μg/mL resulted in 189% cancer cell growth inhibition (compared to paclitaxel used alone).[10]
Safety
Caryophyllene has been given generally recognized as safe (GRAS) designation by the FDA and is approved by the FDA for use as a food additive, typically for flavoring.[11] [12] Rats given up to 700 mg/kg daily for 90 days did not produce any significant toxic effects.[13] Caryophyllene has an of 5,000 mg/kg in mice.[14] [15]
Chemistry
The first total synthesis of caryophyllene in 1964 by E. J. Corey was considered one of the classic demonstrations of the possibilities of synthetic organic chemistry at the time.[16]
Metabolism and derivatives
14-Hydroxycaryophyllene oxide (C15H24O2) was isolated from the urine of rabbits treated with (−)-caryophyllene (C15H24). The X-ray crystal structure of 14-hydroxycaryophyllene (as its acetate derivative) has been reported.
The metabolism of caryophyllene progresses through (−)-caryophyllene oxide (C15H24O) since the latter compound also afforded 14-hydroxycaryophyllene (C15H24O) as a metabolite.[17]
Caryophyllene (C15H24) → caryophyllene oxide (C15H24O) → 14-hydroxycaryophyllene (C15H24O) → 14-hydroxycaryophyllene oxide (C15H24O2).
Caryophyllene oxide,[18] in which the alkene group of caryophyllene has become an epoxide, is the component responsible for cannabis identification by drug-sniffing dogs[19] [20] and is also an approved food additive, often as flavoring.[12] Caryophyllene oxide may have negligible cannabinoid activity.[21]
Natural sources
The approximate quantity of caryophyllene in the essential oil of each source is given in square brackets ([]):
Biosynthesis
Caryophyllene is a common sesquiterpene among plant species. It is biosynthesized from the common terpene precursors dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP). First, single units of DMAPP and IPP are reacted via an SN1-type reaction with the loss of pyrophosphate, catalyzed by the enzyme GPPS2, to form geranyl pyrophosphate (GPP). This further reacts with a second unit of IPP, also via an SN1-type reaction catalyzed by the enzyme IspA, to form farnesyl pyrophosphate (FPP). Finally, FPP undergoes QHS1 enzyme-catalyzed intramolecular cyclization to form caryophyllene.[39]
Compendial status
Notes and References
- Ghelardini . C. . Galeotti . N. . Di Cesare Mannelli . L. . Mazzanti . G. . Bartolini . A. . Local anaesthetic activity of beta-caryophyllene . Farmaco . 56 . 5–7 . 387–389 . 2001 . 11482764 . 10.1016/S0014-827X(01)01092-8. 2158/397975 . free .
- Web site: G.. Tinseth. Hop Aroma and Flavor. January–February 1993. Brewing Techniques. July 21, 2010.
- Jirovetz . L. . Buchbauer . G. . Ngassoum . M. B. . Geissler . M. . Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction–gas chromatography, solid-phase microextraction–gas chromatography–mass spectrometry and olfactometry . Journal of Chromatography A . 976 . 1–2 . 265–275 . November 2002 . 12462618 . 10.1016/S0021-9673(02)00376-X.
- Ceccarelli . Ilaria . Fiorenzani . Paolo . Pessina . Federica . Pinassi . Jessica . Aglianò . Margherita . Miragliotta . Vincenzo . Aloisi . Anna Maria . The CB2 Agonist β-Caryophyllene in Male and Female Rats Exposed to a Model of Persistent Inflammatory Pain . Frontiers in Neuroscience . 18 August 2020 . 14 . 850 . 10.3389/fnins.2020.00850. 7461959 . 33013287 . free .
- Alberti . Thaís Barbosa . Barbosa . Wagner Luiz Ramos . Vieira . José Luiz Fernandes . Raposo . Nádia Rezende Barbosa . Dutra . Rafael Cypriano . (−)-β-Caryophyllene, a CB2 Receptor-Selective Phytocannabinoid, Suppresses Motor Paralysis and Neuroinflammation in a Murine Model of Multiple Sclerosis . International Journal of Molecular Sciences . 1 April 2017 . 18 . 4 . 691 . 10.3390/ijms18040691 . 28368293 . 5412277 . free .
- Hashiesh . Hebaallah Mamdouh . Sharma . Charu . Goyal . Sameer N. . Sadek . Bassem . Jha . Niraj Kumar . Kaabi . Juma Al . Ojha . Shreesh . A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid . Biomedicine & Pharmacotherapy . 1 August 2021 . 140 . 111639 . 10.1016/j.biopha.2021.111639 . 34091179 . 235362290 . free .
- Book: Russo . Ethan B. . Marcu . Jahan . Cannabinoid Pharmacology . Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads . Advances in Pharmacology . 2017 . 80 . 67–134 . 10.1016/bs.apha.2017.03.004 . 28826544 . 978-0-12-811232-8 .
- Bow . Eric W. . Rimoldi . John M. . The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation . Perspectives in Medicinal Chemistry . 28 June 2016 . 8 . 17–39 . 10.4137/PMC.S32171 . 27398024 . 4927043 .
- Zhou . Wenliang . Yang . Shilong . Li . Bowen . Nie . Yonggang . Luo . Anna . Huang . Guangping . Liu . Xuefeng . Lai . Ren . Wei . Fuwen . Why wild giant pandas frequently roll in horse manure . Proceedings of the National Academy of Sciences . 22 December 2020 . 117 . 51 . 32493–32498 . 10.1073/pnas.2004640117 . 33288697 . 7768701 . 2020PNAS..11732493Z . free .
- 5889900 . 2018 . Blowman . K. . Magalhães . M. . Lemos . M. F. . Cabral . C. . Pires . I. M. . Anticancer Properties of Essential Oils and Other Natural Products . Evidence-Based Complementary and Alternative Medicine . 2018 . 1–12 . 10.1155/2018/3149362 . 29765461 . free .
- Web site: Nomination Background: beta-Caryophyllene (CASRN: 87-44-5) .
- Web site: CFR - Code of Federal Regulations Title 21.
- 10.1177/1091581816655303 . Toxicological Evaluation of β-Caryophyllene Oil . 2016 . Schmitt . D. . Levy . R. . Carroll . B. . International Journal of Toxicology . 35 . 5 . 558–567 . 27358239 . 206689471 . free .
- Web site: β-Caryophyllene - SDS . 18 April 2024.
- Web site: Oil of cinnamon - SDS . 18 April 2024.
- Corey . E. J. . Mitra . R. B. . Uda . H. . Total Synthesis of d,l-Caryophyllene and d,l-Isocaryophyllene . Journal of the American Chemical Society . 1964 . 86 . 3 . 485–492 . 10.1021/ja01057a040.
- Web site: Caryophyllene oxide – C15H24O . PubChem. September 8, 2016.
- Yang . Depo . Michel . Laura . Chaumont . Jean-Pierre . Millet-Clerc . Joëlle . Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis . Mycopathologia . 1999 . 148 . 2 . 79–82 . 10.1023/a:1007178924408 . 11189747 . 24242933 .
- Russo . Ethan B . Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects: Phytocannabinoid-terpenoid entourage effects . British Journal of Pharmacology . August 2011 . 163 . 7 . 1344–1364 . 10.1111/j.1476-5381.2011.01238.x . 21749363 . 3165946 .
- Stahl . E. . Kunde . R. . 1973 . Die Leitsubstanzen der Haschisch-Suchhunde . The tracing substances of hashish search dogs . de . Kriminalistik . 27 . 385–389 .
- Wiley . Jenny L. . Marusich . Julie A. . Blough . Bruce E. . Namjoshi . Ojas . Brackeen . Marcus . Akinfiresoye . Luli R. . Walker . Teneille D. . Prioleau . Cassandra . Barrus . Daniel G. . Gamage . Thomas F. . Evaluation of cannabimimetic effects of selected minor cannabinoids and Terpenoids in mice . Progress in Neuro-Psychopharmacology and Biological Psychiatry . June 2024 . 132 . 110984 . 10.1016/j.pnpbp.2024.110984 . 38417478 . 267941924 .
- Web site: V. . Mediavilla . S. . Steinemann . Essential oil of Cannabis sativa L. strains . International Hemp Association . 11 July 2008.
- Singh . G. . Marimuthu . P. . De Heluani . C. S. . Catalan . C. A. . Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components . Journal of Agricultural and Food Chemistry . 54 . 1 . 174–181 . January 2006 . 16390196 . 10.1021/jf0518610 . 11336/99544 . free .
- Alma . M. Hakki . Ertaş . Murat . Nitz . Siegfrie . Kollmannsberger . Hubert . Chemical composition and content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum L.) . BioResources . 23 May 2007 . 2 . 2 . 265–269 . 10.15376/biores.2.2.265-269 . free .
- Wang . Guodong . Tian . Li . Aziz . Naveed . Broun . Pierre . Dai . Xinbin . He . Ji . King . Andrew . Zhao . Patrick X. . Dixon . Richard A. . Terpene Biosynthesis in Glandular Trichomes of Hop . Plant Physiology . 6 November 2008 . 148 . 3 . 1254–1266 . 10.1104/pp.108.125187 . 18775972 . 2577278 .
- Bernotienë. G.. Nivinskienë. O.. Butkienë. R.. Mockutë. D.. 2004. Chemical composition of essential oils of hops (Humulus lupulus L.) growing wild in Auktaitija. Chemija. 4. 2. 31–36. September 6, 2010. March 7, 2023. https://web.archive.org/web/20230307193722/http://www.elibrary.lt/resursai/LMA/Chemija/C-31.pdf. dead.
- Zheljazkov . V. D. . Cantrell . C. L. . Tekwani . B. . Khan . S. I. . Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting . Journal of Agricultural and Food Chemistry . 56 . 2 . 380–5 . January 2008 . 18095647 . 10.1021/jf0725629 .
- Vasconcelos Silva . M. G. . Abreu Matos . F. J. . Oliveira Lopes . P. R. . Oliveira Silva . F. . Tavares Holanda . M. . G. M. . Cragg . V. S. . Bolzani. Vanderlan da Silva Bolzani . G. S. R. S. . Rao . August 2, 2004 . Composition of essential oils from three Ocimum species obtained by steam and microwave distillation and supercritical CO2 extraction . Arkivoc . 2004 . 6 . 66–71 . 10.3998/ark.5550190.0005.609 . free . 2027/spo.5550190.0005.609 . free .
- Harvala C, Menounos P, Argyriadou N . Essential oil from Origanum dictamnus . Planta Medica . 53 . 1 . 107–109 . February 1987 . 17268981 . 10.1055/s-2006-962640 . 260278580 .
- Calvo Irabién . L. M. . Yam-Puc . J. A. . Dzib . G. . Escalante Erosa . F. . Peña Rodríguez . L. M. . July 2009 . Effect of postharvest drying on the composition of Mexican oregano (Lippia graveolens) essential oil . Journal of Herbs, Spices & Medicinal Plants . 15 . 3 . 281–287 . 10.1080/10496470903379001 . 86208062 .
- 11336262 . 57 . 1 . The essential oil of Origanum vulgare L. ssp. vulgare growing wild in Vilnius district (Lithuania) . May 2001 . Phytochemistry . 65–69 . 10.1016/s0031-9422(00)00474-x. Mockutė . D. . Bernotienė . G. . Judžentienė . A. . 2001PChem..57...65M .
- Prashar . A. . Locke . I. C. . Evans . C. S. . 2004 . Cytotoxicity of lavender oil and its major components to human skin cells . Cell Proliferation . 37 . 3. 221–229 . 10.1111/j.1365-2184.2004.00307.x . 15144499. 6496511 .
- Umezu. T.. Nagano. K.. Ito. H.. Kosakai. K.. Sakaniwa. M.. Morita. M.. Anticonflict effects of lavender oil and identification of its active constituents. Pharmacology Biochemistry and Behavior. December 2006. 85. 4. 713–721. 10.1016/j.pbb.2006.10.026. 17173962. 21779233.
- Ormeño . E. . Baldy . V. . Ballini . C. . Fernández . C. . Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients . Journal of Chemical Ecology . 34 . 9 . 1219–1229 . September 2008 . 18670820 . 10.1007/s10886-008-9515-2 . 2008JCEco..34.1219O . 28717342 .
- Kaul . Pran N . Bhattacharya . Arun K . Rajeswara Rao . Bhaskaruni R . Syamasundar . Kodakandla V . Ramesh . Srinivasaiyer . Volatile constituents of essential oils isolated from different parts of cinnamon (Cinnamomum zeylanicum Blume) . Journal of the Science of Food and Agriculture . 1 January 2003 . 83 . 1 . 53–55 . 10.1002/jsfa.1277 . 2003JSFA...83...53K .
- Ahmed . Aftab . Choudhary . M. Iqbal . Farooq . Afgan . Demirci . Betül . Demirci . Fatih . Başer . K. Hüsnü Can . Essential oil constituents of the spice Cinnamomum tamala (Ham.) Nees & Eberm . Flavour and Fragrance Journal . 2000 . 15 . 6 . 388–390 . 10.1002/1099-1026(200011/12)15:6<388::AID-FFJ928>3.0.CO;2-F . free .
- Leandro . Lidiam Maia . de Sousa Vargas . Fabiano . Barbosa . Paula Cristina Souza . Neves . Jamilly Kelly Oliveira . da Silva . José Alexsandro . da Veiga-Junior . Valdir Florêncio . Chemistry and Biological Activities of Terpenoids from Copaiba (Copaifera spp.) Oleoresins . Molecules . 30 March 2012 . 17 . 4 . 3866–3889 . 10.3390/molecules17043866 . 22466849 . 6269112 . free .
- Sousa . João Paulo B. . Brancalion . Ana P.S. . Souza . Ariana B. . Turatti . Izabel C.C. . Ambrósio . Sérgio R. . Furtado . Niege A.J.C. . Lopes . Norberto P. . Bastos . Jairo K. . Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils . Journal of Pharmaceutical and Biomedical Analysis . March 2011 . 54 . 4 . 653–659 . 10.1016/j.jpba.2010.10.006 . 21095089 . free .
- Yang . Jianming . Li . Zhengfeng . Guo . Lizhong . Du . Juan . Bae . Hyeun-Jong . Biosynthesis of β-caryophyllene, a novel terpene-based high-density biofuel precursor, using engineered Escherichia coli . Renewable Energy . December 2016 . 99 . 216–223 . 10.1016/j.renene.2016.06.061 .
- Web site: The United States Pharmacopeial Convention . Revisions to FCC, First Supplement . 29 June 2009 . dead . https://web.archive.org/web/20100705122159/http://www.usp.org/fcc/FCC61SBallotResultsWebPostingReport01.html . 5 July 2010 .
- Web site: Therapeutic Goods Administration . Chemical substances . 29 June 2009 . https://web.archive.org/web/20110422122647/http://www.tga.gov.au/docs/pdf/aan/aanchem.pdf . 22 April 2011 . dead . Therapeutic Goods Administration .