In mathematics, the base flow of a random dynamical system is the dynamical system defined on the "noise" probability space that describes how to "fast forward" or "rewind" the noise when one wishes to change the time at which one "starts" the random dynamical system.
In the definition of a random dynamical system, one is given a family of maps
\varthetas:\Omega\to\Omega
(\Omega,l{F},P)
(\Omega,l{F},P,\vartheta)
\varthetas
The parameter
s
R
[0,+infty)\subsetneqR
Z
N\cup\{0\}
Each map
\varthetas
(l{F},l{F})
E\inl{F}
-1 | |
\vartheta | |
s |
(E)\inl{F}
P
E\inl{F}
P
-1 | |
(\vartheta | |
s |
(E))=P(E)
Furthermore, as a family, the maps
\varthetas
\vartheta0=id\Omega:\Omega\to\Omega
\Omega
\varthetas\circ\varthetat=\varthetas
s
t
-1 | |
\vartheta | |
s |
=\vartheta-s
-s
In other words, the maps
\varthetas
s\inN\cup\{0\}
s\in[0,+infty)
s\inZ
s\inR
W:R x \Omega\toX
(\Omega,l{F},P)
\varthetas:\Omega\to\Omega
W(t,\varthetas(\omega))=W(t+s,\omega)-W(s,\omega)
This can be read as saying that
\varthetas
s