A backward stochastic differential equation (BSDE) is a stochastic differential equation with a terminal condition in which the solution is required to be adapted with respect to an underlying filtration. BSDEs naturally arise in various applications such as stochastic control, mathematical finance, and nonlinear Feynman-Kac formulae.[1]
Backward stochastic differential equations were introduced by Jean-Michel Bismut in 1973 in the linear case[2] and by Étienne Pardoux and Shige Peng in 1990 in the nonlinear case.[3]
Fix a terminal time
T>0
(\Omega,l{F},P)
(Bt)t\in
(l{F}t)t\in
where
f:[0,T] x R x R\toR
\xi
l{F}T
(Yt,Zt)t\in[0,T]
(Yt)t\in[0,T]
(Zt)t\in[0,T]
(l{F}t)t\in
In the case
f\equiv0
If
\xi\inL2(\Omega,P)
(Zt)t\in
Yt=E[\xi|l{F}t]
Zt
Deep backward stochastic differential equation method is a numerical method that combines deep learning with Backward stochastic differential equation (BSDE). This method is particularly useful for solving high-dimensional problems in financial mathematics problems. By leveraging the powerful function approximation capabilities of deep neural networks, deep BSDE addresses the computational challenges faced by traditional numerical methods in high-dimensional settings. Specifically, traditional methods like finite difference methods or Monte Carlo simulations often struggle with the curse of dimensionality, where computational cost increases exponentially with the number of dimensions. Deep BSDE methods, however, employ deep neural networks to approximate solutions of high-dimensional partial differential equations (PDEs), effectively reducing the computational burden.[4]