b
Given a number base
b
n
k
n
f(x)=x2
Z/bkZ
bk
Z/bkZ
Zb
b
f(x)=x2
Zb
For example, with
b=10
f(x)=x2
\ldots0000000000
\ldots0000000001
\ldots8212890625
\ldots1787109376
A fixed point of
f(x)
g(x)=f(x)-x
b
2\omega(b)
g(x)=x2-x
\omega(b)
b
x
Z/bZ
g(x)=x2-x
x\equiv0\bmod
vp(b) | |
p |
x\equiv1\bmod
vp(b) | |
p |
p|b
\lbrace0,1\rbrace
\omega(b)
p|b
2\omega(b)
g(x)=x2-x
2\omega(b)
f(x)=x2
k
b
k
b
b
2\omega(b)
b
f(x)=x2
As 0 is always a zero-divisor, 0 and 1 are always fixed points of
f(x)=x2
b
b
f(x)=x2
b
All
b
b
b | Prime factors of b | Fixed points in Z/bZ f(x)=x2 | b f(x)=x2 | Automorphic numbers in base b | |
---|---|---|---|---|---|
6 | 2, 3 | 0, 1, 3, 4 | \ldots0000000000 \ldots0000000001 \ldots2221350213 \ldots3334205344 | 0, 1, 3, 4, 13, 44, 213, 344, 5344, 50213, 205344, 350213, 1350213, 4205344, 21350213, 34205344, 221350213, 334205344, 2221350213, 3334205344, ... | |
10 | 2, 5 | 0, 1, 5, 6 | \ldots0000000000 \ldots0000000001 \ldots8212890625 \ldots1787109376 | 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, ... | |
12 | 2, 3 | 0, 1, 4, 9 | \ldots0000000000 \ldots0000000001 \ldots21B61B3854 \ldots9A05A08369 | 0, 1, 4, 9, 54, 69, 369, 854, 3854, 8369, B3854, 1B3854, A08369, 5A08369, 61B3854, B61B3854, 1B61B3854, A05A08369, 21B61B3854, 9A05A08369, ... | |
14 | 2, 7 | 0, 1, 7, 8 | \ldots0000000000 \ldots0000000001 \ldots7337AA0C37 \ldots6AA633D1A8 | 0, 1, 7, 8, 37, A8, 1A8, C37, D1A8, 3D1A8, A0C37, 33D1A8, AA0C37, 633D1A8, 7AA0C37, 37AA0C37, A633D1A8, 337AA0C37, AA633D1A8, 6AA633D1A8, 7337AA0C37, ... | |
15 | 3, 5 | 0, 1, 6, 10 | \ldots0000000000 \ldots0000000001 \ldots624D4BDA86 \ldots8CA1A3146A | 0, 1, 6, A, 6A, 86, 46A, A86, 146A, DA86, 3146A, BDA86, 4BDA86, A3146A, 1A3146A, D4BDA86, 4D4BDA86, A1A3146A, 24D4BDA86, CA1A3146A, 624D4BDA86, 8CA1A3146A, ... | |
18 | 2, 3 | 0, 1, 9, 10 | ...000000 ...000001 ...4E1249 ...D3GFDA | ||
20 | 2, 5 | 0, 1, 5, 16 | ...000000 ...000001 ...1AB6B5 ...I98D8G | ||
21 | 3, 7 | 0, 1, 7, 15 | ...000000 ...000001 ...86H7G7 ...CE3D4F | ||
22 | 2, 11 | 0, 1, 11, 12 | ...000000 ...000001 ...8D185B ...D8KDGC | ||
24 | 2, 3 | 0, 1, 9, 16 | ...000000 ...000001 ...E4D0L9 ...9JAN2G | ||
26 | 2, 13 | 0, 1, 13, 14 | ...0000 ...0001 ...1G6D ...O9JE | ||
28 | 2, 7 | 0, 1, 8, 21 | ...0000 ...0001 ...AAQ8 ...HH1L | ||
30 | 2, 3, 5 | 0, 1, 6, 10, 15, 16, 21, 25 | ...0000 ...0001 ...B2J6 ...H13A ...1Q7F ...S3MG ...CSQL ...IRAP | ||
33 | 3, 11 | 0, 1, 12, 22 | ...0000 ...0001 ...1KPM ...VC7C | ||
34 | 2, 17 | 0, 1, 17, 18 | ...0000 ...0001 ...248H ...VTPI | ||
35 | 5, 7 | 0, 1, 15, 21 | ...0000 ...0001 ...5MXL ...TC1F | ||
36 | 2, 3 | 0, 1, 9, 28 | ...0000 ...0001 ...DN29 ...MCXS |
n
ai
An
a
f(x)=ax2
For example, with
b=10
a=2
f(x)=2x2
Z/10Z
x=0
x=8
f(x)=2x2
\ldots0000000000
\ldots0893554688
A trimorphic number or spherical number occurs when the polynomial function is
f(x)=x3
For base
b=10
0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, ...
For base
b=12
0, 1, 3, 4, 5, 7, 8, 9, B, 15, 47, 53, 54, 5B, 61, 68, 69, 75, A7, B3, BB, 115, 253, 368, 369, 4A7, 5BB, 601, 715, 853, 854, 969, AA7, BBB, 14A7, 2369, 3853, 3854, 4715, 5BBB, 6001, 74A7, 8368, 8369, 9853, A715, BBBB, ...
0: new_roots.append(new_i) return new_roots
base = 10digits = 10
def automorphic_polynomial(x: int) -> int: return x ** 2 - x
for i in range(1, digits + 1): print(hensels_lemma(automorphic_polynomial, base, i))