Aurifeuillean factorization explained

In number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is factorization of certain integer values of the cyclotomic polynomials.[1] Because cyclotomic polynomials are irreducible polynomials over the integers, such a factorization cannot come from an algebraic factorization of the polynomial. Nevertheless, certain families of integers coming from cyclotomic polynomials have factorizations given by formulas applying to the whole family, as in the examples below.

Examples

a4+4b4

have the following factorization (Sophie Germain's identity): a^4 + 4b^4 = (a^2 - 2ab + 2b^2)\cdot (a^2 + 2ab + 2b^2). Setting

a=1

and

b=2k

, one obtains the following aurifeuillean factorization of
2k+1
\Phi
4(2

)=24k+2+1

, where
2+1
\Phi
4(x)=x
is the fourth cyclotomic polynomial: 2^+1 = (2^-2^+1)\cdot (2^+2^+1).

a6+27b6

have the following factorization, where the first factor (

a2+3b2

) is the algebraic factorization of sum of two cubes: a^6 + 27b^6 = (a^2 + 3b^2)\cdot (a^2 - 3ab + 3b^2)\cdot (a^2 + 3ab + 3b^2). Setting

a=1

and

b=3k

, one obtains the following factorization of

36k+3+1

: 3^+1 = (3^+1)\cdot (3^-3^+1)\cdot (3^+3^+1). Here, the first of the three terms in the factorization is
2k+1
\Phi
2(3

)

and the remaining two terms provide an aurifeuillean factorization of
2k+1
\Phi
6(3

)

, where
2-x+1
\Phi
6(x)=x
.

bn-1

or their factors

\Phin(b)

, where

b=s2t

with square-free

t

, have aurifeuillean factorization if and only if one of the following conditions holds:

t\equiv1\pmod4

and

n\equivt\pmod{2t}

t\equiv2,3\pmod4

and

n\equiv2t\pmod{4t}

Thus, when

b=s2 ⋅ t

with square-free

t

, and

n

is congruent to

t

modulo

2t

, then if

t

is congruent to 1 mod 4,

bn-1

have aurifeuillean factorization, otherwise,

bn+1

have aurifeuillean factorization.

If we let L = CD, M = C + D, the aurifeuillean factorizations for bn ± 1 of the form F * (CD) * (C + D) = F * L * M with the bases 2 ≤ b ≤ 24 (perfect powers excluded, since a power of bn is also a power of b) are:

(for the coefficients of the polynomials for all square-free bases up to 199 and up to 998, see [3] [4] [5])

bNumber(CD) * (C + D) = L * MFCD
224k + 2 + 1
2k+1
\Phi
4(2

)

122k + 1 + 12k + 1
336k + 3 + 1
2k+1
\Phi
6(3

)

32k + 1 + 132k + 1 + 13k + 1
5510k + 5 - 1
2k+1
\Phi
5(5

)

52k + 1 - 154k + 2 + 3(52k + 1) + 153k + 2 + 5k + 1
6612k + 6 + 1

\Phi12(62k+1)

64k + 2 + 164k + 2 + 3(62k + 1) + 163k + 2 + 6k + 1
7714k + 7 + 1

\Phi14(72k+1)

72k + 1 + 176k + 3 + 3(74k + 2) + 3(72k + 1) + 175k + 3 + 73k + 2 + 7k + 1
101020k + 10 + 1

\Phi20(102k+1)

104k + 2 + 1108k + 4 + 5(106k + 3) + 7(104k + 2)
+ 5(102k + 1) + 1
107k + 4 + 2(105k + 3) + 2(103k + 2)
+ 10k + 1
111122k + 11 + 1

\Phi22(112k+1)

112k + 1 + 11110k + 5 + 5(118k + 4) - 116k + 3
- 114k + 2 + 5(112k + 1) + 1
119k + 5 + 117k + 4 - 115k + 3
+ 113k + 2 + 11k + 1
12126k + 3 + 1
2k+1
\Phi
6(12

)

122k + 1 + 1122k + 1 + 16(12k)
131326k + 13 - 1

\Phi13(132k+1)

132k + 1 - 11312k + 6 + 7(1310k + 5) + 15(138k + 4)
+ 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 1
1311k + 6 + 3(139k + 5) + 5(137k + 4)
+ 5(135k + 3) + 3(133k + 2) + 13k + 1
141428k + 14 + 1

\Phi28(142k+1)

144k + 2 + 11412k + 6 + 7(1410k + 5) + 3(148k + 4)
- 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 1
1411k + 6 + 2(149k + 5) - 147k + 4
- 145k + 3 + 2(143k + 2) + 14k + 1
151530k + 15 + 1

\Phi30(152k+1)

1514k + 7 - 1512k + 6 + 1510k + 5
+ 154k + 2 - 152k + 1 + 1
158k + 4 + 8(156k + 3) + 13(154k + 2)
+ 8(152k + 1) + 1
157k + 4 + 3(155k + 3) + 3(153k + 2)
+ 15k + 1
171734k + 17 - 1

\Phi17(172k+1)

172k + 1 - 11716k + 8 + 9(1714k + 7) + 11(1712k + 6)
- 5(1710k + 5) - 15(178k + 4) - 5(176k + 3)
+ 11(174k + 2) + 9(172k + 1) + 1
1715k + 8 + 3(1713k + 7) + 1711k + 6
- 3(179k + 5) - 3(177k + 4) + 175k + 3
+ 3(173k + 2) + 17k + 1
18184k + 2 + 1
2k+1
\Phi
4(18

)

1182k + 1 + 16(18k)
191938k + 19 + 1

\Phi38(192k+1)

192k + 1 + 11918k + 9 + 9(1916k + 8) + 17(1914k + 7)
+ 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4)
+ 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 1
1917k + 9 + 3(1915k + 8) + 5(1913k + 7)
+ 7(1911k + 6) + 7(199k + 5) + 7(197k + 4)
+ 5(195k + 3) + 3(193k + 2) + 19k + 1
202010k + 5 - 1
2k+1
\Phi
5(20

)

202k + 1 - 1204k + 2 + 3(202k + 1) + 110(203k + 1) + 10(20k)
212142k + 21 - 1

\Phi21(212k+1)

2118k + 9 + 2116k + 8 + 2114k + 7
- 214k + 2 - 212k + 1 - 1
2112k + 6 + 10(2110k + 5) + 13(218k + 4)
+ 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 1
2111k + 6 + 3(219k + 5) + 2(217k + 4)
+ 2(215k + 3) + 3(213k + 2) + 21k + 1
222244k + 22 + 1

\Phi44(222k+1)

224k + 2 + 12220k + 10 + 11(2218k + 9) + 27(2216k + 8)
+ 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5)
+ 21(228k + 4) + 33(226k + 3) + 27(224k + 2)
+ 11(222k + 1) + 1
2219k + 10 + 4(2217k + 9) + 7(2215k + 8)
+ 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5)
+ 6(227k + 4) + 7(225k + 3) + 4(223k + 2)
+ 22k + 1
232346k + 23 + 1

\Phi46(232k+1)

232k + 1 + 12322k + 11 + 11(2320k + 10) + 9(2318k + 9)
- 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6)
+ 25(2310k + 5) - 15(238k + 4) - 19(236k + 3)
+ 9(234k + 2) + 11(232k + 1) + 1
2321k + 11 + 3(2319k + 10) - 2317k + 9
- 5(2315k + 8) + 2313k + 7 + 7(2311k + 6)
+ 239k + 5 - 5(237k + 4) - 235k + 3
+ 3(233k + 2) + 23k + 1
242412k + 6 + 1

\Phi12(242k+1)

244k + 2 + 1244k + 2 + 3(242k + 1) + 112(243k + 1) + 12(24k)

L10k+5

have the following aurifeuillean factorization:[6]

L10k+5=L2k+1(5{F2k+1

}^2-5F_+1)\cdot (5^2+5F_+1)

where

Ln

is the

n

th Lucas number, and

Fn

is the

n

th Fibonacci number.

History

In 1869, before the discovery of aurifeuillean factorizations,, through a tremendous manual effort,[7] [8] obtained the following factorization into primes:

258+1=5107367629536903681.

Three years later, in 1871, Aurifeuille discovered the nature of this factorization; the number

24k+2+1

for

k=14

, with the formula from the previous section, factors as:

258+1=(229-215+1)(229+215+1)=536838145536903681.

Of course, Landry's full factorization follows from this (taking out the obvious factor of 5). The general form of the factorization was later discovered by Lucas.

536903681 is an example of a Gaussian Mersenne norm.

External links

Notes and References

  1. factorization . A. Granville, P. Pleasants . Math. Comp. . 75 . 253 . 2006 . 497–508 . 10.1090/S0025-5718-05-01766-7. free .
  2. Web site: Main Cunningham Tables. At the end of tables 2LM, 3+, 5-, 6+, 7+, 10+, 11+ and 12+ are formulae detailing the aurifeuillean factorizations.
  3. https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean List of aurifeuillean factorization of cyclotomic numbers (square-free bases up to 199)
  4. http://myfactorcollection.mooo.com:8090/LCD_2_199 Coefficients of Lucas C,D polynomials for all square-free bases up to 199
  5. http://myfactorcollection.mooo.com:8090/LCD_2_998 Coefficients of Lucas C,D polynomials for all square-free bases up to 998
  6. https://t5k.org/top20/page.php?id=21 Lucas Aurifeuilliean primitive part
  7. http://www.numericana.com/answer/numbers.htm#aurifeuille Integer Arithmetic, Number Theory – Aurifeuillean Factorizations
  8. https://primes.utm.edu/glossary/page.php?sort=GaussianMersenne Gaussian Mersenne