In number theory, an aurifeuillean factorization, named after Léon-François-Antoine Aurifeuille, is factorization of certain integer values of the cyclotomic polynomials.[1] Because cyclotomic polynomials are irreducible polynomials over the integers, such a factorization cannot come from an algebraic factorization of the polynomial. Nevertheless, certain families of integers coming from cyclotomic polynomials have factorizations given by formulas applying to the whole family, as in the examples below.
a4+4b4
a=1
b=2k
2k+1 | |
\Phi | |
4(2 |
)=24k+2+1
2+1 | |
\Phi | |
4(x)=x |
a6+27b6
a2+3b2
a=1
b=3k
36k+3+1
2k+1 | |
\Phi | |
2(3 |
)
2k+1 | |
\Phi | |
6(3 |
)
2-x+1 | |
\Phi | |
6(x)=x |
bn-1
\Phin(b)
b=s2 ⋅ t
t
t\equiv1\pmod4
n\equivt\pmod{2t}
t\equiv2,3\pmod4
n\equiv2t\pmod{4t}
Thus, when
b=s2 ⋅ t
t
n
t
2t
t
bn-1
bn+1
If we let L = C − D, M = C + D, the aurifeuillean factorizations for bn ± 1 of the form F * (C − D) * (C + D) = F * L * M with the bases 2 ≤ b ≤ 24 (perfect powers excluded, since a power of bn is also a power of b) are:
(for the coefficients of the polynomials for all square-free bases up to 199 and up to 998, see [3] [4] [5])
b | Number | (C − D) * (C + D) = L * M | F | C | D | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 24k + 2 + 1 |
) | 1 | 22k + 1 + 1 | 2k + 1 | ||||||
3 | 36k + 3 + 1 |
) | 32k + 1 + 1 | 32k + 1 + 1 | 3k + 1 | ||||||
5 | 510k + 5 - 1 |
) | 52k + 1 - 1 | 54k + 2 + 3(52k + 1) + 1 | 53k + 2 + 5k + 1 | ||||||
6 | 612k + 6 + 1 | \Phi12(62k+1) | 64k + 2 + 1 | 64k + 2 + 3(62k + 1) + 1 | 63k + 2 + 6k + 1 | ||||||
7 | 714k + 7 + 1 | \Phi14(72k+1) | 72k + 1 + 1 | 76k + 3 + 3(74k + 2) + 3(72k + 1) + 1 | 75k + 3 + 73k + 2 + 7k + 1 | ||||||
10 | 1020k + 10 + 1 | \Phi20(102k+1) | 104k + 2 + 1 | 108k + 4 + 5(106k + 3) + 7(104k + 2) + 5(102k + 1) + 1 | 107k + 4 + 2(105k + 3) + 2(103k + 2) + 10k + 1 | ||||||
11 | 1122k + 11 + 1 | \Phi22(112k+1) | 112k + 1 + 1 | 1110k + 5 + 5(118k + 4) - 116k + 3 - 114k + 2 + 5(112k + 1) + 1 | 119k + 5 + 117k + 4 - 115k + 3 + 113k + 2 + 11k + 1 | ||||||
12 | 126k + 3 + 1 |
) | 122k + 1 + 1 | 122k + 1 + 1 | 6(12k) | ||||||
13 | 1326k + 13 - 1 | \Phi13(132k+1) | 132k + 1 - 1 | 1312k + 6 + 7(1310k + 5) + 15(138k + 4) + 19(136k + 3) + 15(134k + 2) + 7(132k + 1) + 1 | 1311k + 6 + 3(139k + 5) + 5(137k + 4) + 5(135k + 3) + 3(133k + 2) + 13k + 1 | ||||||
14 | 1428k + 14 + 1 | \Phi28(142k+1) | 144k + 2 + 1 | 1412k + 6 + 7(1410k + 5) + 3(148k + 4) - 7(146k + 3) + 3(144k + 2) + 7(142k + 1) + 1 | 1411k + 6 + 2(149k + 5) - 147k + 4 - 145k + 3 + 2(143k + 2) + 14k + 1 | ||||||
15 | 1530k + 15 + 1 | \Phi30(152k+1) | 1514k + 7 - 1512k + 6 + 1510k + 5 + 154k + 2 - 152k + 1 + 1 | 158k + 4 + 8(156k + 3) + 13(154k + 2) + 8(152k + 1) + 1 | 157k + 4 + 3(155k + 3) + 3(153k + 2) + 15k + 1 | ||||||
17 | 1734k + 17 - 1 | \Phi17(172k+1) | 172k + 1 - 1 | 1716k + 8 + 9(1714k + 7) + 11(1712k + 6) - 5(1710k + 5) - 15(178k + 4) - 5(176k + 3) + 11(174k + 2) + 9(172k + 1) + 1 | 1715k + 8 + 3(1713k + 7) + 1711k + 6 - 3(179k + 5) - 3(177k + 4) + 175k + 3 + 3(173k + 2) + 17k + 1 | ||||||
18 | 184k + 2 + 1 |
) | 1 | 182k + 1 + 1 | 6(18k) | ||||||
19 | 1938k + 19 + 1 | \Phi38(192k+1) | 192k + 1 + 1 | 1918k + 9 + 9(1916k + 8) + 17(1914k + 7) + 27(1912k + 6) + 31(1910k + 5) + 31(198k + 4) + 27(196k + 3) + 17(194k + 2) + 9(192k + 1) + 1 | 1917k + 9 + 3(1915k + 8) + 5(1913k + 7) + 7(1911k + 6) + 7(199k + 5) + 7(197k + 4) + 5(195k + 3) + 3(193k + 2) + 19k + 1 | ||||||
20 | 2010k + 5 - 1 |
) | 202k + 1 - 1 | 204k + 2 + 3(202k + 1) + 1 | 10(203k + 1) + 10(20k) | ||||||
21 | 2142k + 21 - 1 | \Phi21(212k+1) | 2118k + 9 + 2116k + 8 + 2114k + 7 - 214k + 2 - 212k + 1 - 1 | 2112k + 6 + 10(2110k + 5) + 13(218k + 4) + 7(216k + 3) + 13(214k + 2) + 10(212k + 1) + 1 | 2111k + 6 + 3(219k + 5) + 2(217k + 4) + 2(215k + 3) + 3(213k + 2) + 21k + 1 | ||||||
22 | 2244k + 22 + 1 | \Phi44(222k+1) | 224k + 2 + 1 | 2220k + 10 + 11(2218k + 9) + 27(2216k + 8) + 33(2214k + 7) + 21(2212k + 6) + 11(2210k + 5) + 21(228k + 4) + 33(226k + 3) + 27(224k + 2) + 11(222k + 1) + 1 | 2219k + 10 + 4(2217k + 9) + 7(2215k + 8) + 6(2213k + 7) + 3(2211k + 6) + 3(229k + 5) + 6(227k + 4) + 7(225k + 3) + 4(223k + 2) + 22k + 1 | ||||||
23 | 2346k + 23 + 1 | \Phi46(232k+1) | 232k + 1 + 1 | 2322k + 11 + 11(2320k + 10) + 9(2318k + 9) - 19(2316k + 8) - 15(2314k + 7) + 25(2312k + 6) + 25(2310k + 5) - 15(238k + 4) - 19(236k + 3) + 9(234k + 2) + 11(232k + 1) + 1 | 2321k + 11 + 3(2319k + 10) - 2317k + 9 - 5(2315k + 8) + 2313k + 7 + 7(2311k + 6) + 239k + 5 - 5(237k + 4) - 235k + 3 + 3(233k + 2) + 23k + 1 | ||||||
24 | 2412k + 6 + 1 | \Phi12(242k+1) | 244k + 2 + 1 | 244k + 2 + 3(242k + 1) + 1 | 12(243k + 1) + 12(24k) |
L10k+5
L10k+5=L2k+1 ⋅ (5{F2k+1
where
Ln
n
Fn
n
In 1869, before the discovery of aurifeuillean factorizations,, through a tremendous manual effort,[7] [8] obtained the following factorization into primes:
258+1=5 ⋅ 107367629 ⋅ 536903681.
Three years later, in 1871, Aurifeuille discovered the nature of this factorization; the number
24k+2+1
k=14
258+1=(229-215+1)(229+215+1)=536838145 ⋅ 536903681.
Of course, Landry's full factorization follows from this (taking out the obvious factor of 5). The general form of the factorization was later discovered by Lucas.
536903681 is an example of a Gaussian Mersenne norm.