In mathematics, the associated graded ring of a ring R with respect to a proper ideal I is the graded ring:
\operatorname{gr}IR=
infty | |
oplus | |
n=0 |
In/In+1
\operatorname{gr}IR
\operatorname{gr}IM=
infty | |
oplus | |
n=0 |
InM/In+1M
For a ring R and ideal I, multiplication in
\operatorname{gr}IR
a\inIi/Ii
b\inIj/Ij
a'\inIi
b'\inIj
ab
a'b'
Ii/Ii
Ii
A ring or module may be related to its associated graded ring or module through the initial form map. Let M be an R-module and I an ideal of R. Given
f\inM
\operatorname{gr}IM
in(f)
ImM/Im+1M
f\inImM
f\inImM
in(f)=0
N\subsetM
in(N)
\operatorname{gr}IM
\{in(f)|f\inN\}
\operatorname{gr}IM
A ring inherits some "good" properties from its associated graded ring. For example, if R is a noetherian local ring, and
\operatorname{gr}IR
Let
N\subsetM
{In(M/N)\overIn+1(M/N)}\simeq{InM+N\overIn+1M+N}\simeq{InM\overInM\cap(In+1M+N)}={InM\overInM\capN+In+1M}
\operatorname{gr}I(M/N)=\operatorname{gr}IM/\operatorname{in}(N)
\operatorname{in}(N)=
infty | |
oplus | |
n=0 |
{InM\capN+In+1M\overIn+1M},
N
Let U be the universal enveloping algebra of a Lie algebra
ak{g}
\operatorname{gr}U
k[ak{g}*]
The associated graded algebra of a Clifford algebra is an exterior algebra; i.e., a Clifford algebra degenerates to an exterior algebra.
The associated graded can also be defined more generally for multiplicative descending filtrations of R (see also filtered ring.) Let F be a descending chain of ideals of the form
R=I0\supsetI1\supsetI2\supset...b
IjIk\subsetIj
\operatorname{gr}FR=
infty | |
oplus | |
n=0 |
In/In+1
. David Eisenbud. Commutative Algebra. Graduate Texts in Mathematics. 150. Springer-Verlag. 1995. 0-387-94268-8. 10.1007/978-1-4612-5350-1. 1322960. New York.