Arcsine distribution explained

In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:

F(x)=

2
\pi

\arcsin\left(\sqrtx\right)=

\arcsin(2x-1)+
\pi
1
2

for 0 ≤ x ≤ 1, and whose probability density function is

f(x)=

1
\pi\sqrt{x(1-x)
}

on (0, 1). The standard arcsine distribution is a special case of the beta distribution with α = β = 1/2. That is, if

X

is an arcsine-distributed random variable, then

X\sim{\rmBeta}l(\tfrac{1}{2},\tfrac{1}{2}r)

. By extension, the arcsine distribution is a special case of the Pearson type I distribution.

The arcsine distribution appears in the Lévy arcsine law, in the Erdős arcsine law, and as the Jeffreys prior for the probability of success of a Bernoulli trial.[1] [2]

Generalization

Arbitrary bounded support

The distribution can be expanded to include any bounded support from a ≤ x ≤ b by a simple transformation

F(x)=

2
\pi

\arcsin\left(\sqrt

x-a
b-a

\right)

for a ≤ x ≤ b, and whose probability density function is

f(x)=

1
\pi\sqrt{(x-a)(b-x)
}

on (ab).

Shape factor

The generalized standard arcsine distribution on (0,1) with probability density function

f(x;\alpha)=

\sin\pi\alpha
\pi

x-\alpha(1-x)\alpha-1

is also a special case of the beta distribution with parameters

{\rmBeta}(1-\alpha,\alpha)

.

Note that when

\alpha=\tfrac{1}{2}

the general arcsine distribution reduces to the standard distribution listed above.

Properties

X\sim{\rmArcsine}(a,b)thenkX+c\sim{\rmArcsine}(ak+c,bk+c)

X\sim{\rmArcsine}(-1,1)thenX2\sim{\rmArcsine}(0,1)

r

centered at the origin (0, 0), have an

{\rmArcsine}(-r,r)

distribution

U\sim{\rmUniform}(0,2\pir)

, we have that the point's x coordinate distribution is

r\cos(U)\sim{\rmArcsine}(-r,r)

, and its y coordinate distribution is r \cdot \sin(U) \sim (-r,r)

Characteristic function

The characteristic function of the generalized arcsine distribution is a zero order Bessel function of the first kind, multiplied by a complex exponential, given by

itb+a
2
e
J
0(b-a
2

t)

. For the special case of

b=-a

, the characteristic function takes the form of

J0(bt)

.

Related distributions

\sin(U)

,

\sin(2U)

,

-\cos(2U)

,

\sin(U+V)

and

\sin(U-V)

all have an

{\rmArcsine}(-1,1)

distribution.

X

is the generalized arcsine distribution with shape parameter

\alpha

supported on the finite interval [a,b] then
X-a
b-a

\sim{\rmBeta}(1-\alpha,\alpha)

\tfrac{1}{1+X2}

has a standard arcsine distribution

Notes and References

  1. Overturf . Drew . Buchanan . Kristopher . Jensen . Jeffrey . Wheeland . Sara . Huff . Gregory . 1 . 2017 . Investigation of beamforming patterns from volumetrically distributed phased arrays . MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM) . 817–822 . 10.1109/MILCOM.2017.8170756 . 978-1-5386-0595-0 .
  2. K. . Buchanan . J. . Jensen . C. . Flores-Molina . S. . Wheeland . G. H. . Huff . 1 . Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions . IEEE Transactions on Antennas and Propagation . 68 . 7 . 5353-5364 . 2020 . 10.1109/TAP.2020.2978887 .