Archaeoparasitology Explained

Archaeoparasitology, a multi-disciplinary field within paleopathology, is the study of parasites in archaeological contexts.[1] It includes studies of the protozoan and metazoan parasites of humans in the past, as well as parasites which may have affected past human societies, such as those infesting domesticated animals.

Reinhard suggested that the term "archaeoparasitology" be applied to "... all parasitological remains excavated from archaeological contexts ... derived from human activity" and that "the term 'paleoparasitology' be applied to studies of nonhuman, paleontological material." (p. 233)[2] Paleoparasitology includes all studies of ancient parasites outside of archaeological contexts, such as those found in amber,[3] [4] and even dinosaur parasites.[5]

The first archaeoparasitology report described calcified eggs of Bilharzia haematobia (now Schistosoma haematobium) from the kidneys of an ancient Egyptian mummy.[6] Since then, many fundamental archaeological questions have been answered by integrating our knowledge of the hosts, life cycles and basic biology of parasites, with the archaeological, anthropological and historical contexts in which they are found.

Parasitology basics

Parasites are organisms which live in close association with another organism, called the host, in which the parasite benefits from the association, to the detriment of the host. Many other kinds of associations may exist between two closely allied organisms, such as commensalism or mutualism.

Endoparasites (such as protozoans and helminths), tend to be found inside the host, while ectoparasites (such as ticks, lice and fleas) live on the outside of the host body. Parasite life cycles often require that different developmental stages pass sequentially through multiple host species in order to successfully mature and reproduce. Some parasites are very host-specific, meaning that only one or a few species of hosts are capable of perpetuating their life cycle. Others are not host-specific, since many different hosts appear to harbor and pass on the infective stages of the parasite.

Most archaeoparasitology reports involve species which are considered to be true parasites of humans today. However, incidental parasitism (referred to by some authors as "pseudoparasitism", "false parasitism" or "accidental parasitism") occurs when a parasite which does not normally utilize a host for the perpetuation of its lifecycle is found in that host incidentally. One example is finding the eggs of Cryptocotyle lingua (a fish parasite) in the stomach contents of an Eskimo mummy.[7] It is estimated that 70% of the "parasite" species reported from present-day humans are actually only incidental parasites.[8] Some incidental parasites do cause harm to the infested pseudohosts.[9]

Sources of material

In archaeological contexts, endoparasites (or their eggs or cysts) are usually found in (i) fossilized human or animal dung (coprolites), (ii) the tissues and digestive contents of mummified corpses,[10] or (iii) soil samples from latrines, cesspits, or middens (dumps for domestic waste). A cyst of Echinococcus granulosus was even retrieved from cemetery soil in Poland.[11] Ectoparasites may be found on the skin or scalp, as well as wigs, clothing, or personal grooming accessories found in archaeological sites.[12] [13] Ectoparasite eggs may be found attached to individual hairs.[14] [15] The International Ancient Egyptian Mummy Tissue Bank in Manchester, England, provides tissue samples for a variety of uses, including parasitological studies.[16]

Since 1910, parasite remains have been found in archaeological samples from Africa, the Americas, Asia, Europe, the Middle East, and New Zealand. The age of archaeological sites yielding human parasite remains ranges from approx. 25,000-30,000 years ago[17] to late 19th-early 20th century.[18] Parasite remains have also been found in domestic animal remains at archaeological sites.[19] [20]

Human skeletal remains may exhibit indirect evidence of parasitism. For example, hookworm (Ancyslostoma duodenale) parasitism may lead to anemia, and anemia is one factor associated with the skeletal changes of cribra orbitalia and porotic hyperostosis. Thus, hookworm parasitism may be a causal factor in observed cribra orbitalia and porotic hyperostosis,[21] though dietary factors may also lead to anemia.[22]

Information on the presence of intermediate hosts, required for life cycle completion by many parasites, is also useful in determining the likelihood that a parasite may have infected a particular ancient society. One example is the identification of molluscan intermediate hosts of schistosomiasis in an Islamic archaeological context.[23]

Artifacts depicting the appearance of individuals may also indicate cases of parasitism. Examples include the characteristic facial deformities of leishmaniasis found on pre-Columbian Mochica pottery,[24] and morphological features of certain ancient Egyptian figurative art.[25] Literary sources also provide valuable information regarding not only the parasites present in historic societies, but also the knowledge and attitudes that the people had towards their parasitic infestations.[26] [27] [28] However, specific parasitological diagnoses reported in ancient and medieval texts must always be read with some degree of skepticism.[29]

Techniques and methods

Parasite remains in archaeological samples are identified by a variety of techniques. Very durable remains, such as eggs and cysts, may remain intact for many thousands of years. In some cases, relatively intact soft-bodied adult helminths[30] [31] and ectoparasitic arthropods[32] [33] have been found. All of these forms can be identified to the family, genus or species level by compound or electron microscopy.
Petrographic techniques have been used for eggs of Capillaria hepatica found in cysts in the corpse of an adolescent from the late Roman period buried in Amiens (France).[34] The authors stated that identification of tissue-dwelling parasites such as Capillaria hepatica in archaeological remains is particularly dependent on preservation conditions and taphonomic changes and should be interpreted with caution due to morphological similarities with Trichuris sp. eggs

In cases where the intact bodies of parasites are not found, protein or DNA from the parasite may still be present. Antigenic and immunological assays (including enzyme-linked immunoassay - ELISA,[35] [36] [37]), and DNA sequencing[38] [39] [40] [41] [42] [43] are used to identify the source of these chemical remains, often to the species level.

Fundamental questions

Archaeoparasitological studies have provided information on many fundamental archaeological, historical, and biogeographical questions. These questions may be grouped into the following broad categories: past dietary and farming practices,[44] animal domestication,[45] [46] migration patterns,[47] [48] climate change,[49] sanitary practices,[50] cultural contacts,[51] [52] ethnomedicine,[53] [54] and the overall health of various human societies.[55] Archaeoparasitology data, combined with our knowledge of present host-parasite associations, also contributes to our understanding of the co-evolution of human host-parasite interactions.[56] Our understanding of the geographic origins, evolution and biogeography of the parasites themselves and human diseases associated with them[57] [58] [59] has also benefitted tremendously from archaeoparasitological studies.

Notes and References

  1. Book: Reinhard KJ, Araújo A . Archaeoparasitology . Pearsall, Deborah M. . Encyclopedia of Archaeology . Elsevier/Academic Press . Amsterdam . 2008 . 494–501 . 978-0-12-548030-7 .
  2. Reinhard KJ . Parasitology as an interpretive tool in archaeology . Am. Antiq. . 57 . 2 . 231–45 . 1992 . 10.2307/280729 . 280729.
  3. Poinar G.O., Jr. . H. Poinar . Paleoleishmania proterus n.gen., n.sp. (Trypanosomatidae: Kinetoplastida) from Cretaceous Burmese amber . Protist . 155 . 3 . 305–10 . 2004 . 10.1078/1434461041844259. 15552057 .
  4. . Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber . Proceedings of the National Academy of Sciences of the United States of America . 99 . 3 . 1410–3 . February 2002 . 11818534 . 122204 . 10.1073/pnas.022643899 . 2002PNAS...99.1410W . free .
  5. Poinar G, Boucot AJ . Evidence of intestinal parasites of dinosaurs . Parasitology . 133 . Pt 2 . 245–9 . August 2006 . 16623965 . 10.1017/S0031182006000138 . 41076534 .
  6. Ruffer MA . Note on the presence of Bilharzia haematobia in Egyptian mummies of the Twentieth Dynasty (1250–1000 BC) . British Medical Journal . 1 . 16 . 1910 . 10.1136/bmj.1.2557.16-a . 20764829 . 2330583 . 2557.
  7. Book: Zimmerman MR . Aleutian and Alaskan mummies . Cockburn, Eve . Cockburn, Aidan . Mummies, disease, and ancient cultures . Cambridge University Press . Cambridge, UK . 1980 . 118–134 . 978-0-521-23020-9 . https://archive.org/details/mummiesdiseasean0000unse/page/118 .
  8. Ashford RW . The human parasite fauna: towards an analysis and interpretation . Ann Trop Med Parasitol . 85 . 1 . 189–98 . February 1991 . 1888215 . 10.1080/00034983.1991.11812545 .
  9. Sing A, Tybus K, Fackler I . Acute urticaria associated with Dicrocoelium dendriticum infestation . Indian J Med Microbiol . 26 . 1 . 97–8 . 2008 . 18227619 . 10.1016/S0255-0857(21)02013-2 . free . 1807/53557 . free .
  10. Nezamabadi M, Mashkour M, Aali A, Stöllner T, Le Bailly M. The Journal of Parasitology . 10.1645/12-113.1 . 99 . 3 . 570–572 . 23240712. 2013 . Identification of Taeniasp. In a Natural Human Mummy (Third Century BC) from the Chehrabad Salt Mine in Iran . 26253984 .
  11. Gladykowska-Rzeczycka JJ, Wrzesinska A, Wrzesinski J . Rzadkie znalezisko torbieli pasozyta z wczesnosredniowiecznego cmentarzyska w dziekanowicach / A rare finding of a parasitic cyst from an early mediaeval cemetery in Dziekanowice . Archeologia Polski . 48 . 1–2 . 65–76 . 2003.
  12. Mumcuoglu YK, Zias J . Head lice, Pediculus humanus capitis (Anoplura: Pediculidae) from hair combs excavated in Israel and dated from the first century B.C. to the eighth century A.D . J. Med. Entomol. . 25 . 6 . 545–7 . November 1988 . 3060619 . 10.1093/jmedent/25.6.545 .
  13. Mumcuoglu KY, Zias J, Tarshis M, Lavi M, Stiebel GD . Body louse remains found in textiles excavated at Masada, Israel . J. Med. Entomol. . 40 . 4 . 585–7 . July 2003 . 14680131 . 10.1603/0022-2585-40.4.585 . free .
  14. Capasso L, Di Tota G . Lice buried under the ashes of Herculaneum . Lancet . 351 . 9107 . 992 . March 1998 . 9734976 . 10.1016/s0140-6736(05)60665-4. 19628629 .
  15. Rivera MA, Mumcuoglu KY, Matheny RT, Matheny DG . Huevecillos de Anthropophthirus capitis en momias de la tradición Chinchorro, Camarones 15-D, norte de Chile / Head lice eggs, Anthropophthirus capitis, from mummies of the Chinchorro tradition, Mamarones 15-D, northern Chile . . 40 . 1 . 30–9 . 2008 . 10.4067/s0717-73562008000100004. free .
  16. Lambert-Zazulak PI, Rutherford P, David AR . The International Ancient Egyptian Mummy Tissue Bank at the Manchester Museum as a resource for the pelaeoepidemiological study of schistosomiasis . World Archaeology . 35 . 2 . 223–40 . 2003 . 10.1080/0043824032000111399. 162867729 .
  17. Bouchet F, Baffier D, Girard M, Morel P, Paicheler J, David F . Paléoparasitologie en contexte pléistocène premières observations à la Grande Grotte d'Arcy-sur-Cure (Yonne), France . Comptes Rendus de l'Académie des Sciences, Série III . 319 . 2 . 147–51 . 1996.
  18. Reinhard KJ, Araújo A, Sianto L, Costello JG, Swope K . Chinese liver flukes in latrine sediments from Wong Nim's property, San Bernardino, California: archaeoparasitology of the Caltrans District Headquarters . J. Parasitol. . 94 . 1 . 300–3 . February 2008 . 18372657 . 10.1645/GE-1049.1 . 12108882 .
  19. Dittmar K, Teegen WR . The presence of Fasciola hepatica (liver-fluke) in humans and cattle from a 4,500-year-old archaeological site in the Saale-Unstrut Valley, Germany . Memórias do Instituto Oswaldo Cruz . 98 . Suppl 1 . 141–3 . 2003 . 10.1590/S0074-02762003000900021. 12687774 .
  20. Schelvis J, Koot C . Sheep or goat? Dalaminia deals with the dilemma . Proceedings of the Section of Experimental and Applied Entomology of the Netherlands Entomological Society . 6 . 161–2 . 1995.
  21. Carlson D, Armelagos G, Van Gerven D . Factors influencing the etiology of cribra orbitalia in prehistoric Nubia . Journal of Human Evolution . 3 . 5 . 405–10 . 1974 . 10.1016/0047-2484(74)90203-6.
  22. Holland TD, O'Brien MJ . Parasites, porotic hyperostosis, and the implications of changing perspectives . Am. Antiq. . 62 . 2 . 183–93 . 1997 . 10.2307/282505 . 282505.
  23. Insoll T, Hutchins E . The archaeology of disease: Molluscs as potential disease indicators in Bahrain . World Archaeology . 37 . 4 . 579–88 . 2005 . 10.1080/00438240500411230 . 161727217 . 2008-11-07 . https://web.archive.org/web/20110627081558/http://www.insoll.org/Bahrain%20Disease.pdf . 2011-06-27 . dead .
  24. Serarcangeli C, Pennica A . Testimonianze di una malattia autoctona nella ceramica del Perú precolombiano / Testimonies of an autochthonous illness on the anthropomorphic pottery in ancient Peru . Medicina Nei Secoli . 8 . 1 . 125–41 . 1996 . 11623468.
  25. Hoeppli R . Morphological changes in human schistosomiasis and certain analogies in ancient Egyptian sculpture . Acta Tropica . 30 . 1 . 1–11 . 1973 . 4144954. 10.5169/seals-311865.
  26. Moule . Léon . La parasitologie dans la littérature antique. II. Les parasites du tube digestif . Archives de Parasitologie . 14 . 353–83 . 1911.
  27. Book: Sandison AT . Parasitic diseases . Brothwell DR, Sandison AT . Diseases in Antiquity . Charles C. Thomas . Springfield, IL . 1967 . 178–183 .
  28. Book: Beavis, Ian C. . Insects and other invertebrates in classical antiquity . University of Exeter . Exeter . 1988 . 978-0-85989-284-1 .
  29. Bondeson J . The bosom serpent . J R Soc Med . 91 . 8 . 442–7 . August 1998 . 9816368 . 1296852 . 10.1177/014107689809100817 .
  30. Allison MJ, Pezzia A, Hasegawa I, Gerszten E . A case of hookworm infestation in a precolumbian American . American Journal of Physical Anthropology . 41 . 1 . 103–6 . 1974 . 10.1002/ajpa.1330410113 . 4602000.
  31. Ferreira LF, Araújo A, Duarte AN . Nematode larvae in fossilized animal coprolites from lower and middle Pleistocene sites, central Italy . J. Parasitol. . 79 . 3 . 440–2 . June 1993 . 8501604 . 10.2307/3283583 . 3283583 .
  32. Araújo A, Ferreira LF, Guidon N, Maues Da Serra Freire N, Reinhard KJ, Dittmar K . Ten thousand years of head lice infection . Parasitol. Today (Regul. Ed.) . 16 . 7 . 269 . July 2000 . 10858638 . 10.1016/S0169-4758(00)01694-X.
  33. Kenward H . Pubic lice in Roman and medieval Britain . Trends Parasitol. . 17 . 4 . 167–8 . April 2001 . 11360885 . 10.1016/S1471-4922(01)01890-6.
  34. Mowlavi . G. . Kacki . S. . Dupouy-Camet . J. . Mobedi . I. . Makki . M. . Harandi . MF. . Naddaf . SR. . Probable hepatic capillariosis and hydatidosis in an adolescent from the late Roman period buried in Amiens (France). . Parasite . 21 . 9 . 2014 . 10.1051/parasite/2014010 . 24572211 . 3936287 .
  35. Deelder AM, Miller RL, de Jonge N, Krijger FW . Detection of schistosome antigen in mummies . Lancet . 335 . 8691 . 724–5 . March 1990 . 1969079 . 10.1016/0140-6736(90)90838-V. 12113260 .
  36. Gonçalves ML, Araújo A, Duarte R . Detection of Giardia duodenalis antigen in coprolites using a commercially available enzyme-linked immunosorbent assay . Trans. R. Soc. Trop. Med. Hyg. . 96 . 6 . 640–3 . 2002 . 12625140 . 10.1016/S0035-9203(02)90337-8 . etal.
  37. Mitchell PD, Stern E, Tepper Y . Dysentery in the crusader kingdom of Jerusalem: An ELISA analysis of two medieval latrines in the City of Acre (Israel) . Journal of Archaeological Science . 35 . 7 . 1849–53 . 2008 . 10.1016/j.jas.2007.11.017.
  38. Aufderheide AC, Salo W, Madden M . A 9,000-year record of Chagas' disease . Proceedings of the National Academy of Sciences of the United States of America . 101 . 7 . 2034–9 . February 2004 . 14766963 . 357047 . 10.1073/pnas.0307312101 . etal. 2004PNAS..101.2034A . free .
  39. Dittmar K, Mamat U, Whiting M, Goldmann T, Reinhard K, Guillen S . Techniques of DNA-studies on prehispanic ectoparasites (Pulex sp., Pulicidae, Siphonaptera) from animal mummies of the Chiribaya culture, southern Peru . Memórias do Instituto Oswaldo Cruz . 98 . Suppl 1 . 53–8 . 2003 . 10.1590/S0074-02762003000900010. 12687763 . free .
  40. Iñiguez AM, Reinhard K, Carvalho Gonçalves ML, Ferreira LF, Araújo A, Paulo Vicente AC . SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites . Int. J. Parasitol. . 36 . 13 . 1419–25 . November 2006 . 16950265 . 10.1016/j.ijpara.2006.07.005 .
  41. Loreille O, Roumat E, Verneau O, Bouchet F, Hänni C . Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites . Int. J. Parasitol. . 31 . 10 . 1101–6 . August 2001 . 11429174 . 10.1016/S0020-7519(01)00214-4.
  42. Raoult D, Reed DL, Dittmar K . Molecular identification of lice from pre-Columbian mummies . J. Infect. Dis. . 197 . 4 . 535–43 . February 2008 . 18254682 . 10.1086/526520 . etal. free .
  43. Zink AR, Spigelman M, Schraut B, Greenblatt CL, Nerlich AG, Donoghue HD . Leishmaniasis in ancient Egypt and Upper nubia . Emerging Infect. Dis. . 12 . 10 . 1616–7 . October 2006 . 17176592 . 10.3201/eid1210.060169 . 3290941.
  44. Reinhard KJ, Hevly RH, Anderson GA . Helminth remains from prehistoric Indian coprolites on the Colorado Plateau . J. Parasitol. . 73 . 3 . 630–9 . June 1987 . 3298603 . 10.2307/3282147 . 3282147 .
  45. Nansen P, Jorgensen RJ . [Parasite eggs identified in material from archaeological excavations in Ribe (the viking age) (author's transl)] . da . Nord Vet Med . 29 . 6 . 263–6 . June 1977 . 896405 .
  46. Sadler JP . Records of ectoparasites on humans and sheep from Viking-age deposits in the former western settlement of Greenland . J. Med. Entomol. . 27 . 4 . 628–31 . July 1990 . 2201769 . 10.1093/jmedent/27.4.628 .
  47. Araujo A, Reinhard KJ, Ferreira LF, Gardner SL . Parasites as probes for prehistoric human migrations? . Trends Parasitol. . 24 . 3 . 112–5 . March 2008 . 18262843 . 10.1016/j.pt.2007.11.007 .
  48. Montenegro A, Araújo A, Eby M . Parasites, paleoclimate, and the peopling of the Americas: Using the hookworm to time the Clovis migration . Current Anthropology . 47 . 1 . 193–200 . 2006 . 10.1086/499553.
  49. Araújo A, Rangel A, Ferreira LF . Climatic change in northeastern Brazil: Paleoparasitological data . Memórias do Instituto Oswaldo Cruz . 88 . 4 . 577–9 . 1993 . 10.1590/S0074-02761993000400014. free .
  50. Faulkner CT . Prehistoric diet and parasitic infection in Tennessee: Evidence from the analysis of desiccated human paleofeces . Am. Antiq. . 56 . 4 . 687–700 . 1991 . 10.2307/281546 . 281546. paleofeces .
  51. Araújo A, Ferreira LF, Confalonieri U, Chame M . Hookworms and the peopling of America . Cadernos de Saúde Pública . 4 . 2 . 226–33 . 1988 . 10.1590/S0102-311X1988000200006. free .
  52. Bouchet F, Harter S, Paicheler JC, Aráujo A, Ferreira LF . First recovery of Schistosoma mansoni eggs from a latrine in Europe (15-16th centuries) . J. Parasitol. . 88 . 2 . 404–5 . April 2002 . 12054021 . 10.1645/0022-3395(2002)088[0404:FROSME]2.0.CO;2 .
  53. Reinhard KJ, Ambler JR, McGuffie M . Diet and parasitism at Dust Devil Cave . Am. Antiq. . 50 . 4 . 819–24 . 1985 . 10.2307/280170 . 280170.
  54. Chaves S.A. . de M. . K.J. Reinhard . Critical analysis of coprolite evidence of medicinal plant use in Piaui, Brazil . Palaeogeography, Palaeoclimatology, Palaeoecology . 237 . 1 . 110–8 . 2006 . 10.1016/j.palaeo.2005.11.031.
  55. Book: Sallares, Robert . Malaria and Rome: a history of malaria in ancient Italy . Oxford University Press . Oxford [Oxfordshire] . 2002 . 978-0-19-924850-6 .
  56. Ashford RW . Parasites as indicators of human biology and evolution . J. Med. Microbiol. . 49 . 9 . 771–2 . 1 September 2000 . 10966223 . 10.1099/0022-1317-49-9-771 .
  57. Hugot JP, Reinhard KJ, Gardner SL, Morand S . Human enterobiasis in evolution: origin, specificity and transmission . Parasite . 6 . 3 . 201–8 . September 1999 . 10511967 . 10.1051/parasite/1999063201 . free .
  58. Nozais JP . The origin and dispersion of human parasitic diseases in the old world (Africa, Europe and Madagascar) . Memórias do Instituto Oswaldo Cruz . 98 . Suppl 1. 13–9 . 2003 . 12687757 . 10.1590/S0074-02762003000900004 . free .
  59. Hoberg EP . Phylogeny of Taenia: Species definitions and origins of human parasites . Parasitol. Int. . 55 . Suppl. S23–30 . 2006 . 16371252 . 10.1016/j.parint.2005.11.049 .