In category theory, a branch of mathematics, an antiisomorphism (or anti-isomorphism) between structured sets A and B is an isomorphism from A to the opposite of B (or equivalently from the opposite of A to B). If there exists an antiisomorphism between two structures, they are said to be antiisomorphic.
Intuitively, to say that two mathematical structures are antiisomorphic is to say that they are basically opposites of one another.
The concept is particularly useful in an algebraic setting, as, for instance, when applied to rings.
Let A be the binary relation (or directed graph) consisting of elements and binary relation
→
1 → 2,
1 → 3,
2 → 1.
Let B be the binary relation set consisting of elements and binary relation
⇒
b ⇒ a,
c ⇒ a,
a ⇒ b.
Note that the opposite of B (denoted Bop) is the same set of elements with the opposite binary relation
\Leftarrow
b\Leftarrowa,
c\Leftarrowa,
a\Leftarrowb.
If we replace a, b, and c with 1, 2, and 3 respectively, we see that each rule in Bop is the same as some rule in A. That is, we can define an isomorphism
\phi
\phi(1)=a,\phi(2)=b,\phi(3)=c
\phi
Specializing the general language of category theory to the algebraic topic of rings, we have:Let R and S be rings and f: R → S be a bijection. Then f is a ring anti-isomorphism if
f(x+Ry)=f(x)+Sf(y) and f(x ⋅ Ry)=f(y) ⋅ Sf(x) forallx,y\inR.
An example of a ring anti-automorphism is given by the conjugate mapping of quaternions:
x0+x1i+x2j+x3k \mapsto x0-x1i-x2j-x3k.