Reverse zoonosis explained

A reverse zoonosis, also known as a zooanthroponosis (Greek "animal", "man", "disease") or anthroponosis,[1] is a pathogen reservoired in humans that is capable of being transmitted to non-human animals.[2]

Terminology

Anthroponosis refers to pathogens sourced from humans and can include human to non-human animal transmission but also human to human transmission. The term zoonosis technically refers to disease transferred between any animal and another animal, human or non-human, without discretion, and also been defined as disease transmitted from animals to humans and vice versa.[2] Yet because of human-centered medical biases, zoonosis tends to be used in the same manner as anthropozoonosis which specifically refers to pathogens reservoired in non-human animals that are transmissible to humans.[2]

Additional confusion due to frequency of scientists using "anthropozoonosis" and "zooanthroponosis" interchangeably was resolved during a 1967 Joint Food and Agriculture and World Health Organization committee meeting that recommended the use of "zoonosis" to describe the bidirectional interchange of infectious pathogens between animals and humans.[3] [2]

Furthermore, because humans are rarely in direct contact with wild animals and introduce pathogens through "soft contact", the term "sapronotic agents" must be introduced. Sapronoses (Greek "decaying") refers to human diseases that harbor the capacity to grow and replicate (not just survive or contaminate) in abiotic environments such as soil, water, decaying plants, animal corpses, excreta, and other substrata.[2] Additionally, sapro-zoonoses can be characterized as having both a live host and a non-animal developmental site of organic matter, soil, or plants.[2] Obligate intracellular parasites that cannot replicate outside of cells and are entirely reproductively reliant on entering the cell to use intracellular resources such as viruses, rickettsiae, chlamydiae, and Cryptosporidium parvum cannot be sapronotic agents.[2]

Etymological pitfalls

Categorizing of disease into epidemiologic classes by the infection's supposed source or the direction of transmission raises a number of contradictions that could be resolved by the use of cyclical models. See the following scenarios:

Zoonosis vs reverse zoonosis vs anthroponosis

In the case of diseases transferred from arthropod vectors such as urban yellow fever, dengue, epidemic typhus, tickborne relapsing fever, zika fever, and malaria,[2] the differentiation between terms becomes ever more hazy. For example, a human infected with malaria is bitten by a mosquito that is subsequently infected as well. This is a case of reverse zoonosis (human to animal). However, the newly infected mosquito then infects another human. This could be a case of zoonosis (animal to human) if the mosquito is considered the original source, or anthroponosis (human to human) if the human is considered the original source. If this infected mosquito instead infected a non-human primate, it could be considered a case of reverse zoonosis/zooanthroponosis (human to animal) if the human is considered the primary source, or simply zoonosis (animal to animal) if the mosquito is considered the primary source.

Zoonosis vs anthroponosis

Similarly, HIV originating in simians (crossover due to humans consuming wild chimpanzee bushmeat) and influenza A viruses originating in avians (crossover due to an antigenic shift) could have initially been considered a zoonotic transference as the infections first came from vertebrate animals, but could currently be regarded as an anthroponosis because of its potential to transfer between human to human.

Sapronosis vs sapro-zoonosis

Typical examples of sapronotic agents are fungal such as coccidioidomycosis, histoplasmosis, aspergillosis, cryptococcosis, Microsporum gypseum. Some can be bacterial from the sporulating clostridium and bacillus to Rhodococcus equi, Burkholderia pseudomallei, Listeria, Erysipelothrix, Yersinia pseudotuberculosis, legionellosis, Pontiac fever, and nontuberculous mycobacterioses. Other sapronotic agents are amebic as in primary amebic meningoencephalitis. Yet again, difficulties in classification arise in the case of sporulating bacteria whose infectious spores are only produced after a significant period of inactive vegetative growth within an abiotic environment, yet this is still considered a case of sapronoses.[2] However, cases of zoo-sapronoses involving Listeria, Erysipelothrix, Yersinia pseudotuberculosis, Burkholderia pseudomallei, and Rhodococcus equi can be transferred by an animal or an abiotic substrate but usually occur via a fecal-oral route between humans and other animals.[4]

Cases with modes of transmission

Arthropod vectors

Malaria

Malaria involves the cyclical infection of animals (human and non-human) and mosquitoes from the genus Anopheles with a number of Plasmodium species. The Plasmodium parasite is transferred to the mosquito as it feeds on the blood of the infected animal whereupon it begins a sporogenic cycle in the gut of the mosquito that will infect another animal at the next blood meal. There does not seem to be any deleterious effects to the mosquito as a result of the parasitic infection.[5] The Plasmodium brasilianum parasite normally found in primates is morphologically similar to the malarial inducing Plasmodium malariae that is more commonly found in humans and it is contested as to whether the two are actually different species.[6] Nevertheless, 12 reports of malaria in the remotely located indigenous Yanomami communities of the Venezuelan Amazon arose where it was surprisingly found to be caused by a strain of P. brasilianum with 100% identical to sequences found in Alouatta seniculus monkeys.[7] This suggests a definite zoonosis and high possibility of spillback back into non-human primate bands as reverse zoonoses.

African sleeping sickness

Trypanosoma brucei gambiense (T. b. gambiense) is a species of African trypanosomes which are protozoan hemoflagellates responsible for trypanosomiasis (more commonly known as African sleeping sickness) in humans and other animals. The protozoa are transferred via Tsetse flies where they multiply and can be transferred to yet another animal host during the fly's blood meal feeding.[8] Outbreaks of sleeping sickness in certain human communities have been eliminated but only temporarily as constant re-introduction from unknown sources statistically suggests the presence of a non-human reservoir where spillback of the pathogen is maintained in a sylvatic cycle and re-introduced into the urban cycle.[9] The presence of T. b. gambiense has been found separately in humans and livestock. This spurred a molecular study comparing serum reactivity of pigs, goats, and cows to human serum where notable similarities in all samples but especially in pig samples.[10] Combined, these findings implicate a reverse zoonotic human to animal transmission.

Arboviruses

Yellow fever viruses, Dengue fever viruses, and Zika viruses are of the Flavivirus genera and Chikungunya virus is of the Alphavirus genera. All of them are considered arboviruses denoting their ability to be transmitted through arthropod vectors.[11] [12] Sylvatic transmission cycles for arboviruses within non-human primate communities have the potential to spillover into an urban cycle within humans where humans could be dead-end hosts in scenarios where further intermingling is eliminated but much more probable is a reemergence of these viruses into either cycle due to spillback.[13] Apparently the maintenance of an arboviral urban cycle between humans requires a rare or understudied conjunction of factors to occur. One of the following situations occurs:

Wild animals

A large number of wild animals with habitats that have yet to be encroached upon by humans are still affected by sapronotic agents through contaminated water.

Giardia

Influenza A virus subtype H1N1

Tuberculosis

Domesticated companionship animals

E. coli

Tuberculosis

Influenza A virus subtype H1N1

COVID-19

Amidst the 2020 global pandemic of COVID-19, susceptibility of cats, ferrets, dogs, chickens, pigs, and ducks to the SARS-CoV-2 coronavirus was examined and it was found that it can be replicated in cats and ferrets with lethal results.

Domesticated livestock animals

Influenza A virus subtype H1N1

Methicillin-resistant Staphylococcus aureus

Wild animals in captivity

Tuberculosis

Coronavirus

Measles

Helicobacter pylori

Wild animals in conservation areas

Coronaviruses

Rhinovirus C

Tuberculosis

Pneumoviruses

Reverse zoonosis in gorillas

See also

Notes and References

  1. Anthroponosis and risk management: a time for ethical vaccination of wildlife? . Sarah JL . Edwards . Helen J . Chatterjee . Joanne M . Santini . June 2021 . The Lancet Microbe . 2 . 6 . e230–e231 . 10.1016/S2666-5247(21)00081-1. 33824953 . 8016401 .
  2. Hubálek Z . Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses . Emerging Infectious Diseases . 9 . 3 . 403–4 . March 2003 . 12643844 . 2958532 . 10.3201/eid0903.020208 .
  3. Book: Zoonoses. Joint FAO/WHO Expert Committee on. Joint FAO/WHO Expert Committee on Zoonoses [meeting held in Geneva from 6 to 12 December 1966] : third report. Organization. World Health. Nations. Food and Agriculture Organization of the United. 1967. World Health Organization. 10665/40679. 978-92-4-120378-4. en.
  4. Tuzio. H. Edwards. D. Elston. T. Jarboe. L. Kudrak. S. Richards. J. Rodan. I. August 2005. Feline zoonoses guidelines from the American Association of Feline Practitioners. Journal of Feline Medicine & Surgery. en. 7. 4. 243–274. 10.1016/j.jfms.2004.11.001. 16130211. 8177042.
  5. Web site: CDC - Malaria - About Malaria - Biology. Prevention. CDC-Centers for Disease Control and. 2019-01-28. www.cdc.gov. en-us. 2020-04-22.
  6. Ramasamy. Ranjan. 2014-08-18. Zoonotic Malaria – Global Overview and Research and Policy Needs. Frontiers in Public Health. 2. 123. 10.3389/fpubh.2014.00123. 2296-2565. 4135302. 25184118. free.
  7. Lalremruata. Albert. Magris. Magda. Vivas-Martínez. Sarai. Koehler. Maike. Esen. Meral. Kempaiah. Prakasha. Jeyaraj. Sankarganesh. Perkins. Douglas Jay. Mordmüller. Benjamin. Metzger. Wolfram G.. September 2015. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon. eBioMedicine. 2. 9. 1186–1192. 10.1016/j.ebiom.2015.07.033. 2352-3964. 4588399. 26501116.
  8. Web site: CDC - African Trypanosomiasis - Biology. 2019-06-12. www.cdc.gov. en-us. 2020-04-22.
  9. Funk. Sebastian. Nishiura. Hiroshi. Heesterbeek. Hans. Edmunds. W. John. Checchi. Francesco. 2013-01-17. Identifying Transmission Cycles at the Human-Animal Interface: The Role of Animal Reservoirs in Maintaining Gambiense Human African Trypanosomiasis. PLOS Computational Biology. 9. 1. e1002855. 10.1371/journal.pcbi.1002855. 1553-734X. 3547827. 23341760. 2013PLSCB...9E2855F . free .
  10. Cordon-Obras. Carlos. Cano. Jorge. González-Pacanowska. Dolores. Benito. Agustin. Navarro. Miguel. Bart. Jean-Mathieu. 2013-12-23. Trypanosoma brucei gambiense Adaptation to Different Mammalian Sera Is Associated with VSG Expression Site Plasticity. PLOS ONE. 8. 12. e85072. 10.1371/journal.pone.0085072. 1932-6203. 3871602. 24376866. 2013PLoSO...885072C. free.
  11. Kuno. G.. Chang. G. J.. Tsuchiya. K. R.. Karabatsos. N.. Cropp. C. B.. January 1998. Phylogeny of the genus Flavivirus. Journal of Virology. 72. 1. 73–83. 10.1128/JVI.72.1.73-83.1998. 0022-538X. 9420202. 109351.
  12. Forrester. N. L.. Palacios. G.. Tesh. R. B.. Savji. N.. Guzman. H.. Sherman. M.. Weaver. S. C.. Lipkin. W. I.. March 2012. Genome-scale phylogeny of the alphavirus genus suggests a marine origin. Journal of Virology. 86. 5. 2729–2738. 10.1128/JVI.05591-11. 1098-5514. 3302268. 22190718.
  13. Figueiredo. Luiz Tadeu Moraes. 2019. Human Urban Arboviruses Can Infect Wild Animals and Jump to Sylvatic Maintenance Cycles in South America. Frontiers in Cellular and Infection Microbiology. English. 9. 259. 10.3389/fcimb.2019.00259. 31380302. 6653809. 2235-2988. free.
  14. Ndenga. Bryson Alberto. Mutuku. Francis Maluki. Ngugi. Harun Njenga. Mbakaya. Joel Omari. Aswani. Peter. Musunzaji. Peter Siema. Vulule. John. Mukoko. Dunstan. Kitron. Uriel. LaBeaud. Angelle Desiree. 2017-12-19. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya. PLOS ONE. en. 12. 12. e0189971. 10.1371/journal.pone.0189971. 1932-6203. 5736227. 29261766. 2017PLoSO..1289971N. free.
  15. Hanley. Kathryn A.. Monath. Thomas P.. Weaver. Scott C.. Rossi. Shannan L.. Richman. Rebecca L.. Vasilakis. Nikos. October 2013. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infection, Genetics and Evolution. 19. 292–311. 10.1016/j.meegid.2013.03.008. 1567-7257. 3749261. 23523817. 2013InfGE..19..292H .
  16. Web site: Zika Virus Epidemiology. www.zikavirusnet.com. en-gb. 2020-04-22. dead. https://web.archive.org/web/20200216130946/https://www.zikavirusnet.com/epidemiology.html. 2020-02-16 .
  17. Web site: HHSF223201610542P Final Report. Coffey LL, Van Rompay K, Keesler R, Pesavento P, Singapuri A, Linnen J, Gao K. May 22, 2017. Food and Drug Administration. live. https://wayback.archive-it.org/7993/20180126133803/https://www.fda.gov/downloads/EmergencyPreparedness/Counterterrorism/MedicalCountermeasures/MCMLegalRegulatoryandPolicyFramework/UCM565405.pdf. January 26, 2018. April 22, 2020.
  18. Bryant. Juliet E. Holmes. Edward C. Barrett. Alan D. T. May 2007. Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLOS Pathogens. 3. 5. e75. 10.1371/journal.ppat.0030075. 1553-7366. 1868956. 17511518 . free .
  19. Couto-Lima. Dinair. Madec. Yoann. Bersot. Maria Ignez. Campos. Stephanie Silva. Motta. Monique de Albuquerque. Santos. Flávia Barreto Dos. Vazeille. Marie. Vasconcelos. Pedro Fernando da Costa. Lourenço-de-Oliveira. Ricardo. Failloux. Anna-Bella. July 7, 2017. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Scientific Reports. 7. 1. 4848. 10.1038/s41598-017-05186-3. 2045-2322. 5501812. 28687779. 2017NatSR...7.4848C.
  20. Moreira-Soto. A.. Torres. M. C.. Lima de Mendonça. M. C.. Mares-Guia. M. A.. Dos Santos Rodrigues. C. D.. Fabri. A. A.. Dos Santos. C. C.. Machado Araújo. E. S.. Fischer. C.. Ribeiro Nogueira. R. M.. Drosten. C.. September 2018. Evidence for multiple sylvatic transmission cycles during the 2016-2017 yellow fever virus outbreak, Brazil. Clinical Microbiology and Infection. 24. 9. 1019.e1–1019.e4. 10.1016/j.cmi.2018.01.026. 1469-0691. 29427798. free.
  21. Tsetsarkin. Konstantin A. Chen. Rubing. Weaver. Scott C. February 2016. Interspecies transmission and chikungunya virus emergence. Current Opinion in Virology. 16. 143–150. 10.1016/j.coviro.2016.02.007. 1879-6257. 4824623. 26986235.
  22. Hanley. Kathryn A.. Monath. Thomas P.. Weaver. Scott C.. Rossi. Shannan L.. Richman. Rebecca L.. Vasilakis. Nikos. October 2013. Fever versus Fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infection, Genetics and Evolution. 19. 292–311. 10.1016/j.meegid.2013.03.008. 1567-1348. 3749261. 23523817. 2013InfGE..19..292H .
  23. de Thoisy. Benoît. Lacoste. Vincent. Germain. Adeline. Muñoz-Jordán. Jorge. Colón. Candimar. Mauffrey. Jean-François. Delaval. Marguerite. Catzeflis. François. Kazanji. Mirdad. Matheus. Séverine. Dussart. Philippe. April 2009. Dengue infection in neotropical forest mammals. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.). 9. 2. 157–170. 10.1089/vbz.2007.0280. 1557-7759. 18945183.
  24. Calderón. Alfonso. Guzmán. Camilo. Mattar. Salim. Rodriguez. Virginia. Martínez. Caty. Violet. Lina. Martínez. Jairo. Figueiredo. Luiz Tadeu Moraes. October 2019. Dengue Virus in Bats from Córdoba and Sucre, Colombia. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.). 19. 10. 747–751. 10.1089/vbz.2018.2324. 1557-7759. 6765209. 31211661.
  25. de Figueiredo. Mario LG. de C Gomes. Almério. Amarilla. Alberto A.. de S Leandro. André. de S Orrico. Agnaldo. de Araujo. Renato F.. do SM Castro. Jesuína. Durigon. Edison L.. Aquino. Victor H.. Figueiredo. Luiz TM. 2010-07-12. Mosquitoes infected with dengue viruses in Brazil. Virology Journal. 7. 1. 152. 10.1186/1743-422X-7-152. 1743-422X. 2913956. 20624314 . free .
  26. Ash. A.. Lymbery. A.. Lemon. J.. Vitali. S.. Thompson. R. C. A.. 2010-12-15. Molecular epidemiology of Giardia duodenalis in an endangered carnivore – The African painted dog. Veterinary Parasitology. en. 174. 3. 206–212. 10.1016/j.vetpar.2010.08.034. 20851525. 0304-4017.
  27. Osterhaus. A. D.. Rimmelzwaan. G. F.. Martina. B. E.. Bestebroer. T. M.. Fouchier. R. A.. 2000-05-12. Influenza B virus in seals. Science. 288. 5468. 1051–1053. 10.1126/science.288.5468.1051. 0036-8075. 10807575. 2000Sci...288.1051O.
  28. Barasona. J. A.. Vicente. J.. Díez-Delgado. I.. Aznar. J.. Gortázar. C.. Torres. M. J.. August 2017. Environmental Presence of Mycobacterium tuberculosis Complex in Aggregation Points at the Wildlife/Livestock Interface. Transboundary and Emerging Diseases. 64. 4. 1148–1158. 10.1111/tbed.12480. 1865-1682. 26865411. 22483980. free.
  29. Ewers. Christa. Grobbel. Mirjam. Stamm. Ivonne. Kopp. Peter A.. Diehl. Ines. Semmler. Torsten. Fruth. Angelika. Beutlich. Janine. Guerra. Beatriz. Wieler. Lothar H.. Guenther. Sebastian. April 2010. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. The Journal of Antimicrobial Chemotherapy. 65. 4. 651–660. 10.1093/jac/dkq004. 1460-2091. 20118165. free.
  30. Erwin. Paul C.. Bemis. David A.. McCombs. Scott B.. Sheeler. Lorinda L.. Himelright. Inga M.. Halford. Sandy K.. Diem. Lois. Metchock. Beverly. Jones. Timothy F.. Schilling. Melisse G.. Thomsen. Bruce V.. December 2004. Mycobacterium tuberculosis transmission from human to canine. Emerging Infectious Diseases. 10. 12. 2258–2210. 10.3201/eid1012.040094. 1080-6040. 3323378. 15672533.
  31. Swenson. Sabrina L.. Koster. Leo G.. Jenkins-Moore. Melinda. Killian. Mary L.. DeBess. Emilio E.. Baker. Rocky J.. Mulrooney. Donna. Weiss. Robin. Galeota. Judith. Bredthauer. Annette. September 2010. Natural cases of 2009 pandemic H1N1 Influenza A virus in pet ferrets. Journal of Veterinary Diagnostic Investigation. 22. 5. 784–788. 10.1177/104063871002200525. 1040-6387. 20807944. free.
  32. Shi. Jianzhong. Wen. Zhiyuan. Zhong. Gongxun. Yang. Huanliang. Wang. Chong. Huang. Baoying. Liu. Renqiang. He. Xijun. Shuai. Lei. Sun. Ziruo. Zhao. Yubo. 2020-04-08. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 368. 6494. 1016–1020. en. 10.1126/science.abb7015. 0036-8075. 32269068. 7164390.
  33. Sjurseth. Siri Kulberg. Gjerset. Britt. Bragstad. Karoline. Hungnes. Olav. Wisløff. Helene. Er. Chiek. Valheim. Mette. Løtvedt. Siri M.. David. Bruce. Hanssen. Skjalg A.. Hauge. Siri H.. 2017. Human to animal transmission of influenza A(H1N1)pdm09 in a turkey breeder flock in Norway. Infection Ecology & Epidemiology. 7. 1. 1416249. 10.1080/20008686.2017.1416249. 2000-8686. 5738641. 29296243. 2017InfEE...716249K .
  34. Howden. Krista J.. Brockhoff. Egan J.. Caya. Francois D.. McLeod. Laura J.. Lavoie. Martin. Ing. Joan D.. Bystrom. Janet M.. Alexandersen. Soren. Pasick. John M.. Berhane. Yohannes. Morrison. Margaret E.. November 2009. An investigation into human pandemic influenza virus (H1N1) 2009 on an Alberta swine farm. The Canadian Veterinary Journal. 50. 11. 1153–1161. 0008-5286. 2764467. 20119537.
  35. Song. Min-Suk. Lee. Jun Han. Pascua. Philippe Noriel Q.. Baek. Yun Hee. Kwon. Hyeok-il. Park. Kuk Jin. Choi. Hwan-Woon. Shin. Yeun-Kyung. Song. Jae-Young. Kim. Chul-Joong. Choi. Young-Ki. September 2010. Evidence of Human-to-Swine Transmission of the Pandemic (H1N1) 2009 Influenza Virus in South Korea. Journal of Clinical Microbiology. 48. 9. 3204–3211. 10.1128/JCM.00053-10. 0095-1137. 2937722. 20610681.
  36. Nelson. Martha I.. Gramer. Marie R.. Vincent. Amy L.. Holmes. Edward C.. October 2012. Global transmission of influenza viruses from humans to swine. The Journal of General Virology. 93. Pt 10. 2195–2203. 10.1099/vir.0.044974-0. 0022-1317. 3541789. 22791604.
  37. Chastagner. Amélie. Enouf. Vincent. Peroz. David. Hervé. Séverine. Lucas. Pierrick. Quéguiner. Stéphane. Gorin. Stéphane. Beven. Véronique. Behillil. Sylvie. Leneveu. Philippe. Garin. Emmanuel. October 2019. Bidirectional Human–Swine Transmission of Seasonal Influenza A(H1N1)pdm09 Virus in Pig Herd, France, 2018. Emerging Infectious Diseases. 25. 10. 1940–1943. 10.3201/eid2510.190068. 1080-6040. 6759248. 31538914.
  38. Seguin . Jennifer C. . Walker . Robert D. . Caron . John P. . Kloos . Wesley E. . George . Carol G. . Hollis . Richard J. . Jones . Ronald N. . Pfaller . Michael A. . May 1999 . Methicillin-Resistant Staphylococcus aureus Outbreak in a Veterinary Teaching Hospital: Potential Human-to-Animal Transmission . Journal of Clinical Microbiology . 37 . 5 . 1459–1463 . 10.1128/JCM.37.5.1459-1463.1999 . 0095-1137 . 10203505 . 84801.
  39. Price . Lance B. . Stegger . Marc . Hasman . Henrik . Aziz . Maliha . Larsen . Jesper . Andersen . Paal Skytt . Pearson . Talima . Waters . Andrew E. . Foster . Jeffrey T. . Schupp . James . Gillece . John . 2012-02-21 . Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock . mBio . 3 . 1 . 10.1128/mBio.00305-11 . 2150-7511 . 3280451 . 22354957.
  40. Web site: We Are in the Midst of an Elephant Tuberculosis Epidemic. Holt. Nathalia. 2015-03-24. Slate Magazine. en. 2020-04-22.
  41. Crossley. Beate M.. Mock. Richard E.. Callison. Scott A.. Hietala. Sharon K.. 2012-12-12. Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E. Viruses. 4. 12. 3689–3700. 10.3390/v4123689. 1999-4915. 3528286. 23235471. free.
  42. Willy. M. E.. Woodward. R. A.. Thornton. V. B.. Wolff. A. V.. Flynn. B. M.. Heath. J. L.. Villamarzo. Y. S.. Smith. S.. Bellini. W. J.. Rota. P. A.. February 1999. Management of a measles outbreak among Old World nonhuman primates. Laboratory Animal Science. 49. 1. 42–48. 0023-6764. 10090093.
  43. Every . Alison L. . Selwood . Lynne . Lynne Selwood . Castano-Rodriguez . Natalia . Lu . Wei . Windsor . Helen M. . Wee . Janet LK . Swierczak . Agnieszka . Marshall . Barry J. . Kaakoush . Nadeem O. . Mitchell . Hazel M. . Sutton . Philip . 2011-02-07 . Did transmission of Helicobacter pylori from humans cause a disease outbreak in a colony of Stripe-faced Dunnarts (Sminthopsis macroura)? . Veterinary Research . 42 . 1 . 26 . 10.1186/1297-9716-42-26 . 1297-9716 . 3042409 . 21314909 . free .
  44. Book: The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution. 2000-06-15. Oxford University Press. 978-0-19-850507-5. Oxford, New York.
  45. Corman. Victor M.. Muth. Doreen. Niemeyer. Daniela. Drosten. Christian. 2018. Hosts and Sources of Endemic Human Coronaviruses. Advances in Virus Research. 100. 163–188. 10.1016/bs.aivir.2018.01.001. 0065-3527. 7112090. 29551135. 9780128152010.
  46. Patrono. Livia V.. Samuni. Liran. Corman. Victor M.. Nourifar. Leila. Röthemeier. Caroline. Wittig. Roman M.. Drosten. Christian. Calvignac-Spencer. Sébastien. Leendertz. Fabian H.. 2018-06-27. Human coronavirus OC43 outbreak in wild chimpanzees, Côte d'Ivoire, 2016. Emerging Microbes & Infections. 7. 1. 118. 10.1038/s41426-018-0121-2. 2222-1751. 6021434. 29950583.
  47. Scully. Erik J.. Basnet. Sarmi. Wrangham. Richard W.. Muller. Martin N.. Otali. Emily. Hyeroba. David. Grindle. Kristine A.. Pappas. Tressa E.. Thompson. Melissa Emery. Machanda. Zarin. Watters. Kelly E.. February 2018. Lethal Respiratory Disease Associated with Human Rhinovirus C in Wild Chimpanzees, Uganda, 2013. Emerging Infectious Diseases. 24. 2. 267–274. 10.3201/eid2402.170778. 1080-6040. 5782908. 29350142.
  48. Miller. Michele A.. Buss. Peter. Roos. Eduard O.. Hausler. Guy. Dippenaar. Anzaan. Mitchell. Emily. van Schalkwyk. Louis. Robbe-Austerman. Suelee. Waters. W. Ray. Sikar-Gang. Alina. Lyashchenko. Konstantin P.. 2019-02-06. Fatal Tuberculosis in a Free-Ranging African Elephant and One Health Implications of Human Pathogens in Wildlife. Frontiers in Veterinary Science. 6. 18. 10.3389/fvets.2019.00018. 2297-1769. 6373532. 30788347. free.
  49. Negrey. Jacob D.. Reddy. Rachna B.. Scully. Erik J.. Phillips-Garcia. Sarah. Owens. Leah A.. Langergraber. Kevin E.. Mitani. John C.. Emery Thompson. Melissa. Wrangham. Richard W.. Muller. Martin N.. Otali. Emily. 2019-01-21. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerging Microbes & Infections. 8. 1. 139–149. 10.1080/22221751.2018.1563456. 2222-1751. 6455141. 30866768.
  50. Nizeyi. John Bosco. Innocent. Rwego B.. Erume. Joseph. Kalema. Gladys R. N. N.. Cranfield. Michael R.. Graczyk. Thaddeus K.. Campylobacteriosis, Salmonellosis, and Shigellosis in Free-Ranging Human-Habituated Mountain Gorillas of Uganda. April 2001. Journal of Wildlife Diseases. en. 37. 2. 239–244. 10.7589/0090-3558-37.2.239. 11310873. 0090-3558. free.