In complex analysis, a branch of mathematics, an amoeba is a set associated with a polynomial in one or more complex variables. Amoebas have applications in algebraic geometry, especially tropical geometry.
Consider the function
\operatorname{Log}:({C}\setminus\{0\})n\toRn
defined on the set of all n-tuples
z=(z1,z2,...,zn)
Rn,
\operatorname{Log}(z1,z2,...,zn)=(log|z1|,log|z2|,...,log|zn|).
Here, log denotes the natural logarithm. If p(z) is a polynomial in
n
lAp
lAp=\left\{\operatorname{Log}(z):z\in(C\setminus\{0\})n,p(z)=0\right\}.
Amoebas were introduced in 1994 in a book by Gelfand, Kapranov, and Zelevinsky.[1]
Let
V\subset(C*)n
f(z)=\sumjajzj
where
A\subsetZn
aj\inC
zj=
j1 | |
z | |
1 |
…
jn | |
z | |
n |
z=(z1,...,zn)
j=(j1,...,jn)
\Deltaf
f
\Deltaf=ConvexHull\{j\inA\midaj\ne0\}.
Then
Rn\setminuslAp
Rn\setminusl{A}p
\#(\Deltaf\capZn)
\Deltaf
Rn\setminusl{A}p
\Deltaf\capZn
\Deltaf
Rn\setminusl{A}p
\Deltaf
V\subset(C*)2
l{A}p(V)
\pi2Area(\Deltaf)
A useful tool in studying amoebas is the Ronkin function. For p(z), a polynomial in n complex variables, one defines the Ronkin function
Np:Rn\toR
by the formula
Np(x)=
1 | |
(2\pii)n |
-1 | |
\int | |
\operatorname{Log |
(x)}log|p(z)|
dz1 | |
z1 |
\wedge
dz2 | |
z2 |
\wedge … \wedge
dzn | |
zn |
,
where
x
x=(x1,x2,...,xn).
Np
Np(x)=
1 | |
(2\pi)n |
\int | |
[0,2\pi]n |
log|p(z)|d\theta1d\theta2 … d\thetan,
where
z=
x1+i\theta1 | |
\left(e |
,
x2+i\theta2 | |
e |
,...,
xn+i\thetan | |
e |
\right).
The Ronkin function is convex and affine on each connected component of the complement of the amoeba of
p(z)
As an example, the Ronkin function of a monomial
p(z)=a
k1 | |
z | |
1 |
k2 | |
z | |
2 |
...
kn | |
z | |
n |
with
a\ne0
Np(x)=log|a|+k1x1+k2x2+ … +knxn.