In linear algebra, an alternant matrix is a matrix formed by applying a finite list of functions pointwise to a fixed column of inputs. An alternant determinant is the determinant of a square alternant matrix.
Generally, if
f1,f2,...,fn
X
F
{\alpha1,\alpha2,\ldots,\alpham}\inX
m x n
M=\begin{bmatrix} f1(\alpha1)&f2(\alpha1)& … &fn(\alpha1)\\ f1(\alpha2)&f2(\alpha2)& … &fn(\alpha2)\\ f1(\alpha3)&f2(\alpha3)& … &fn(\alpha3)\\ \vdots&\vdots&\ddots&\vdots\\ f1(\alpham)&f2(\alpham)& … &fn(\alpham)\\ \end{bmatrix}
or, more compactly,
Mij=fj(\alphai)
j-1 | |
f | |
j(\alpha)=\alpha |
qj-1 | |
f | |
j(\alpha)=\alpha |
f1,f2,...,fn
f2(x)=\cos(x)
\alpha1=0,\alpha2=\pi/2
\left[\begin{smallmatrix}0&1\ 1&0\end{smallmatrix}\right]
\{\sin(x),\cos(x)\}
\sin(x)
\cos(x)
f2=\cos(x)
\alpha1=0,\alpha2=\pi
\left[\begin{smallmatrix}0&1\ 0&-1\end{smallmatrix}\right]
\sin(x)
\cos(x)
f3(x)=
1 | |
(x+1)(x+2) |
\begin{bmatrix}1/2&1/3&1/6\ 1/3&1/4&1/12\ 1/4&1/5&1/20\end{bmatrix}\sim\begin{bmatrix}1&0&1\ 0&1&-1\ 0&0&0\end{bmatrix}
(1,-1,-1)
f1-f2-f3=0
f3
n=m
\alphai=\alphaj
n=m
fj(x)
(\alphaj-\alphai)
\alpha1,\ldots,\alpham
s | |
(λ1,...,λn) |
fj(x)=
λj | |
x |
. Thomas Muir . Thomas Muir (mathematician) . A treatise on the theory of determinants . 1960 . . 321–363 .
. A. C. Aitken . Alexander Aitken . Determinants and Matrices . 1956 . Oliver and Boyd Ltd . 111–123 .
. Richard P. Stanley . Richard P. Stanley . Enumerative Combinatorics . 1999 . . 334–342 .