Advanced superionic conductor explained

An advanced superionic conductor (AdSIC) in materials science, is fast ion conductor that has a crystal structure close to optimal for fast ion transport (FIT).

History

The term was introduced in a paper by A.L. Despotuli, A.V. Andreeva and B. Rambaby.[1]

Characteristics

The rigid ion sublattice of Advanced SuperIonic Conductors (AdSICs) has structure channels where mobile ions of opposite sign migrate. Their ion-transport characteristics display ionic conductivity of ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy of Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

The Rubidium silver iodide–family is a group of AdSIC compounds and solid solutions that are isostructural with the RbAg4I5 alpha modification. Examples of such compounds with mobile Ag+- and Cu+-cations include KAg4I5, NH4Ag4I5, K1−xCsxAg4I5, Rb1−xCsxAg4I5, CsAg4Br1−xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2 and KCu4I5.[2] [3] [4] [5] [6] [7]

RbAg4I5 AdSIC displays peculiar features of crystal structure and dynamics of mobile ions.[8] [9] [10]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[11] Researchers also developed an all-solid-state battery employing RbAg4I5 superionic conductor.[12]

External links

Notes and References

  1. Despotuli, Andreeva and Rambaby . June 7, 2006 . Nanoionics of advanced superionic conductors . Ionics . 11 . 3–4 . 306–314 . 10.1007/BF02430394 . 53352333 .
  2. Geller. S.. 1967-07-21. Crystal Structure of the Solid Electrolyte, RbAg4I5. Science. en. 157. 3786. 310–312. 10.1126/science.157.3786.310. 0036-8075. 17734228. 1967Sci...157..310G. 44294829.
  3. Geller. S.. 1979-01-01. Crystal structure and conductivity of the solid electrolyte. Physical Review B. 19. 10. 5396–5402. 10.1103/PhysRevB.19.5396.
  4. Hull. S. Keen. D.A. Sivia. D.S. Berastegui. P. Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides. Journal of Solid State Chemistry. en. 165. 2. 363–371. 10.1006/jssc.2002.9552. 2002.
  5. Lichkova. N. V.. Despotuli. A. L.. Zagorodnev. V. N.. Minenkova. N. A.. Shakhlevich. K. V.. 1989-01-01. Ionic conductivity of solid electrolytes in two- and three-component glass forming systems AgX-CsX (X=Cl, Br, I). Ehlektrokhimiya. ru. 25. 12. 1636–1640. 0424-8570.
  6. Studenyak. I. P.. Kranjčec. M.. Bilanchuk. V. V.. Kokhan. O. P. Orliukas. A. F.. Kezionis. A.. Kazakevicius. E.. Salkus. T.. 2009-12-01. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. Journal of Physics and Chemistry of Solids. 70. 12. 1478–1481. 10.1016/j.jpcs.2009.09.003. 2009JPCS...70.1478S.
  7. Despotuli. A.L.. Zagorodnev. V.N.. Lichkova. N.V.. Minenkova. N.A.. 1989. New high conductive CsAg4Br1−xI2+x (0.25 < x <1) solid electrolytes. Soviet Physics - Solid State. 31. 242–244.
  8. Funke. Klaus. Banhatti. Radha D.. Wilmer. Dirk. Dinnebier. Robert. Fitch. Andrew. Jansen. Martin. 2006-03-01. Low-Temperature Phases of Rubidium Silver Iodide: Crystal Structures and Dynamics of the Mobile Silver Ions. The Journal of Physical Chemistry A. 110. 9. 3010–3016. 10.1021/jp054807v. 16509622. 1089-5639.
  9. Chang. Jen-Hui. Zürn. Anke. von Schnering. Hans Georg. 2008-10-01. Hyperbolic Cation Diffusion Paths in α-RbAg4I5 Type Superionic Conductors. Zeitschrift für Anorganische und Allgemeine Chemie. en. 634. 12–13. 2156–2160. 10.1002/zaac.200800343. 1521-3749.
  10. Effect of relative humidity on the reaction kinetics in rubidium silver iodide based all-solid-state battery . Electrochimica Acta . 20 September 2020 . 355 . 136779 . 10.1016/j.electacta.2020.136779 . Akin . Mert . Wang . Yuchen . Qiao . Xiaoyao . Yan . Zhiwei . Zhou . Xiangyang .
  11. Александр Деспотули, Александра Андреева . 2007 . ru:Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего . Современная Электроника . 7 . 24–29 . http://www.nanometer.ru/2007/10/17/nanoionnie_superkondensatori_4879/PROP_FILE_files_1/Despotuli_Andreeva_Modern_Electronics_2007.pdf . ru . 2007-11-02 . Alexander Despotuli, Alexandra Andreeva . 2007 . High-capacity capacitors for 0.5 voltage nanoelectronics of the future . Modern Electronics . 7 . 24–29 . 2007-11-02 .
  12. Wang . Yuchen . Akin . Mert . Qiao . Xiaoyao . Yan . Zhiwei . Zhou . Xiangyang . Greatly enhanced energy density of all‐solid‐state rechargeable battery operating in high humidity environments . International Journal of Energy Research . September 2021 . 45 . 11 . 16794–16805 . 10.1002/er.6928. free .