In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is
GL(n,R)
g
Rn
x\mapstogxg-1
For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.
See also: Representation theory. Let G be a Lie group, and let
\Psi:G\to\operatorname{Aut}(G)
\Psig(h)=ghg-1~.
For each g in G, define to be the derivative of at the origin:
\operatorname{Ad}g=(d\Psig)e:TeG → TeG
ak{g}=TeG
\Psig
akg
g\mapsto\Psig
g\mapsto\operatorname{Ad}g
Ad\colonG\toAut(akg),g\mapstoAdg
If G is an immersed Lie subgroup of the general linear group
GLn(C)
ak{g}
\operatorname{exp}(X)=eX
\Psig
e
ak{g}
t\to\exp(tX)
X
\operatorname{Ad}g(X)=(d\Psig)e(X)=(\Psig\circ\exp(tX))'(0)=(g\exp(tX)g-1)'(0)=gXg-1
G\subsetGLn(C)
akg
Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.
One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.
Taking the derivative of the adjoint map
Ad:G\toAut(akg)
akg=\operatorname{Lie}(G)
\begin{align} ad:&akg\toDer(akg)\\ &x\mapsto\operatorname{ad}x=d(\operatorname{Ad})e(x) \end{align}
Der(akg)=\operatorname{Lie}(\operatorname{Aut}(ak{g}))
Aut(akg)
akg
adx(y)=[x,y]
x,y\inakg
ak{g}
akg
[X,Y]=\limt{1\overt}(d\varphi-t(Y)-Y)
\varphit:G\toG
\varphit(g)=g\varphit(e)
\varphit=
R | |
\varphit(e) |
Rh
h\inG
\Psig=
R | |
g-1 |
\circLg
\operatorname{Ad}g(Y)=d
(R | |
g-1 |
\circLg)(Y)=d
R | |
g-1 |
(dLg(Y))=d
R | |
g-1 |
(Y)
[X,Y]=\limt{1\over
t}(\operatorname{Ad} | |
\varphit(e) |
(Y)-Y)
Thus,
adx
If G is an immersely linear Lie group, then the above computation simplifies: indeed, as noted early,
\operatorname{Ad}g(Y)=gYg-1
g=etX
\operatorname{Ad} | |
etX |
(Y)=etXYe-tX
t=0
\operatorname{ad}XY=XY-YX
G'
The upper-case/lower-case notation is used extensively in the literature. Thus, for example, a vector in the algebra
ak{g}
ak{g}
Further see the derivative of the exponential map.
Let
ak{g}
ak{g}
ak{g}
\operatorname{ad}x:ak{g}\toak{g} with \operatorname{ad}x(y)=[x,y]
ak{g}
\operatorname{ad}x
\operatorname{ad}(x)
\operatorname{ad}:ak{g}\toak{gl}(ak{g})=(\operatorname{End}(ak{g}),[ , ])
(ak{g})
[T,S]=T\circS-S\circT
\circ
[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0
\left([\operatorname{ad}x,\operatorname{ad}y]\right)(z)=\left(\operatorname{ad}[x,\right)(z)
ak{g}
This last identity says that ad is a Lie algebra homomorphism; i.e., a linear mapping that takes brackets to brackets. Hence, ad is a representation of a Lie algebra and is called the adjoint representation of the algebra
ak{g}
If
ak{g}
ak{gl}(ak{g})
In a more module-theoretic language, the construction says that
ak{g}
The kernel of ad is the center of
ak{g}
ak{g}
\delta=\operatorname{ad}z
\delta([x,y])=[\delta(x),y]+[x,\delta(y)]
ak{g}
(ak{g})
ak{g}
When
ak{g}=\operatorname{Lie}(G)
There is the following formula similar to the Leibniz formula: for scalars
\alpha,\beta
x,y,z
(\operatorname{ad}x-\alpha-\beta)n[y,z]=
n | |
\sum | |
i=0 |
\binom{n}{i}\left[(\operatorname{ad}x-\alpha)iy,(\operatorname{ad}x-\beta)nz\right].
The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let be a set of basis vectors for the algebra, with
[ei,e
ij | |
k{c |
{\left[
\operatorname{ad} | |
ei |
j | |
\right] | |
k} |
={cij
Thus, for example, the adjoint representation of su(2) is the defining representation of so(3).
GL(n,\Complex)
ak{gl}n(\Complex)
The following table summarizes the properties of the various maps mentioned in the definition
\Psi\colonG\to\operatorname{Aut}(G) | \Psig\colonG\toG | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lie group homomorphism: \Psigh=\Psig\Psih | Lie group automorphism: \Psig(ab)=\Psig(a)\Psig(b)
=
| ||||||||||
\operatorname{Ad}\colonG\to\operatorname{Aut}(ak{g}) | \operatorname{Ad}g\colonak{g}\toak{g} | ||||||||||
Lie group homomorphism: \operatorname{Ad}gh=\operatorname{Ad}g\operatorname{Ad}h | Lie algebra automorphism: \operatorname{Ad}g
=
\operatorname{Ad}g[x,y]=[\operatorname{Ad}gx,\operatorname{Ad}gy] | ||||||||||
\operatorname{ad}\colonakg\to\operatorname{Der}(akg) | \operatorname{ad}x\colonakg\toakg | ||||||||||
Lie algebra homomorphism: \operatorname{ad} \operatorname{ad}[x,y]=[\operatorname{ad}x,\operatorname{ad}y] | Lie algebra derivation: \operatorname{ad}x \operatorname{ad}x[y,z]=[\operatorname{ad}xy,z]+[y,\operatorname{ad}xz] |
The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore, the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G0 of G. By the first isomorphism theorem we have
Ad(G)\congG/ZG(G0).
Given a finite-dimensional real Lie algebra
ak{g}
\operatorname{Int}(ak{g})
ak{g}
\operatorname{Lie}(\operatorname{Int}(ak{g}))=\operatorname{ad}(ak{g})
ak{g}
Now, if
ak{g}
\operatorname{Int}(ak{g})
\operatorname{Int}(ak{g})=\operatorname{Ad}(G)
If G is semisimple, the non-zero weights of the adjoint representation form a root system.[4] (In general, one needs to pass to the complexification of the Lie algebra before proceeding.) To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t1, ..., tn) as our maximal torus T. Conjugation by an element of T sends
\begin{bmatrix} a11&a12& … &a1n\\ a21&a22& … &a2n\\ \vdots&\vdots&\ddots&\vdots\\ an1&an2& … &ann\\ \end{bmatrix} \mapsto \begin{bmatrix} a11&t1t
-1 | |
2 |
a12& … &t1t
-1 | |
n |
a1n\\ t2t
-1 | |
1 |
a21&a22& … &t2t
-1 | |
n |
a2n\\ \vdots&\vdots&\ddots&\vdots\\ tnt
-1 | |
1 |
an1&tnt
-1 | |
2 |
an2& … &ann\\ \end{bmatrix}.
Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors titj-1 on the various off-diagonal entries. The roots of G are the weights diag(t1, ..., tn) → titj-1. This accounts for the standard description of the root system of G = SLn(R) as the set of vectors of the form ei−ej.
When computing the root system for one of the simplest cases of Lie Groups, the group SL(2, R) of two dimensional matrices with determinant 1 consists of the set of matrices of the form:
\begin{bmatrix} a&b\\ c&d\\ \end{bmatrix}
with a, b, c, d real and ad - bc = 1.
A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form
\begin{bmatrix} t1&0\\ 0&t2\\ \end{bmatrix} = \begin{bmatrix} t1&0\\ 0&1/t1\\ \end{bmatrix} = \begin{bmatrix} \exp(\theta)&0\\ 0&\exp(-\theta)\\ \end{bmatrix}
with
t1t2=1
\begin{bmatrix} \theta&0\\ 0&-\theta\\ \end{bmatrix}=\theta\begin{bmatrix} 1&0\\ 0&0\\ \end{bmatrix}-\theta\begin{bmatrix} 0&0\\ 0&1\\ \end{bmatrix} =\theta(e1-e2).
If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain
\begin{bmatrix} t1&0\\ 0&1/t1\\ \end{bmatrix} \begin{bmatrix} a&b\\ c&d\\ \end{bmatrix} \begin{bmatrix} 1/t1&0\\ 0&t1\\ \end{bmatrix} = \begin{bmatrix} at1&bt1\\ c/t1&d/t1\\ \end{bmatrix} \begin{bmatrix} 1/t1&0\\ 0&t1\\ \end{bmatrix} = \begin{bmatrix} a&b
2\\ c | |
t | |
1 |
-2 | |
t | |
1 |
&d\\ \end{bmatrix}
The matrices
\begin{bmatrix} 1&0\\ 0&0\\ \end{bmatrix} \begin{bmatrix} 0&0\\ 0&1\\ \end{bmatrix} \begin{bmatrix} 0&1\\ 0&0\\ \end{bmatrix} \begin{bmatrix} 0&0\\ 1&0\\ \end{bmatrix}
are then 'eigenvectors' of the conjugation operation with eigenvalues
2, | |
1,1,t | |
1 |
-2 | |
t | |
1 |
2 | |
t | |
1 |
It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).
The adjoint representation can also be defined for algebraic groups over any field.
The co-adjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a co-adjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its co-adjoint orbits. This relationship is closest in the case of nilpotent Lie groups.
\operatorname{Ad}gh=d(\Psigh)e=d(\Psig\circ\Psih)e=d(\Psig)e\circd(\Psih)e=\operatorname{Ad}g\circ\operatorname{Ad}h.