Active matter explained
Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces.[1] [2] [3] [4] Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents.[5] [6] [7] Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles.[8] [9] [10] Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995.[11]
Research in active matter combines analytical techniques, numerical simulations and experiments. Notable analytical approaches include hydrodynamics,[12] kinetic theory, and non-equilibrium statistical physics. Numerical studies mainly involve self-propelled-particles models,[13] [14] making use of agent-based models such as molecular dynamics algorithms or lattice-gas models,[15] as well as computational studies of hydrodynamic equations of active fluids. Experiments on biological systems extend over a wide range of scales, including animal groups (e.g., bird flocks,[16] mammalian herds, fish schools and insect swarms[17]), bacterial colonies, cellular tissues (e.g. epithelial tissue layers,[18] cancer growth and embryogenesis), cytoskeleton components (e.g., in vitro motility assays, actin-myosin networks and molecular-motor driven filaments[19]). Experiments on synthetic systems include self-propelled colloids (e.g., phoretically propelled particles[20]), driven granular matter (e.g. vibrated monolayers[21]), swarming robots and Quinke rotators.
Concepts in Active matter
Active matter systems
Notes and References
- The Mechanics and Statistics of Active Matter. Annual Review of Condensed Matter Physics . 2010-01-01 . 323–345 . 1 . 1 . 10.1146/annurev-conmatphys-070909-104101 . Sriram. Ramaswamy. Sriram Ramaswamy. 1004.1933 . 2010ARCMP...1..323R . 55500360 .
- Marchetti . M. C. . Joanny . J.F. . Ramaswamy . S. . Liverpool . T. B. . Prost . J. . Rao . M. . Adita Simha . R. . 2012 . Hydrodynamics of soft active matter . . 85 . 3 . 1143–1189 . 1207.2929. 10.1103/RevModPhys.85.1143 . 2013RvMP...85.1143M.
- Bechinger . Clemens . Di Leonardo . Roberto . Löwen . Hartmut . Reichhardt . Charles . Volpe . Giorgio . Volpe . Giovanni . 2016-11-23 . Active particles in complex and crowded environments . Reviews of Modern Physics . 88 . 4 . 045006 . 10.1103/RevModPhys.88.045006. 1602.00081 . 2016RvMP...88d5006B .
- Bowick . Mark J. . Fakhri . Nikta . Marchetti . M. Cristina . Ramaswamy . Sriram . 2022-02-11 . Symmetry, Thermodynamics, and Topology in Active Matter . Physical Review X . 12 . 1 . 010501 . 10.1103/PhysRevX.12.010501. 2107.00724 .
- Najafi . Ali . Golestanian . Ramin . 2004-06-16 . Simple swimmer at low Reynolds number: Three linked spheres . Physical Review E . 69 . 6 . 062901 . 10.1103/PhysRevE.69.062901. cond-mat/0402070 . 2004PhRvE..69f2901N .
- Berthier . Ludovic . Kurchan . Jorge . Lectures on non-equilibrium active systems . 7 June 2019 . cond-mat.stat-mech . 1906.04039.
- Cates . Michael E. . Tailleur . Julien . Motility-Induced Phase Separation . Annual Review of Condensed Matter Physics . January 2, 2015 . 6 . 219–244 . 10.1146/annurev-conmatphys-031214-014710 . 1406.3533 . 2015ARCMP...6..219C . 15672131 .
- Howse . Jonathan R. . Jones . Richard A. L. . Ryan . Anthony J. . Gough . Tim . Vafabakhsh . Reza . Golestanian . Ramin . 2007-07-27 . Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk . Physical Review Letters . 99 . 4 . 048102 . 10.1103/PhysRevLett.99.048102. 17678409 . 0706.4406 . 2007PhRvL..99d8102H .
- Bricard . Antoine . Caussin . Jean-Baptiste . Desreumaux . Nicolas . Dauchot . Olivier . Bartolo . Denis . Emergence of macroscopic directed motion in populations of motile colloids . Nature . 6 November 2013 . 503 . 7474 . 95–98 . 10.1038/nature12673 . 24201282 . 1311.2017 . 2013Natur.503...95B . 1174081 . 3 May 2024 . 1 February 2024 . https://web.archive.org/web/20240201085314/https://www.nature.com/articles/nature12673 . live .
- Theurkauff . I. . Cottin-Bizonne . C. . Palacci . J. . Ybert . C. . Bocquet . L. . Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling . Physical Review Letters . 26 June 2012 . 108 . 26 . 268303 . 10.1103/PhysRevLett.108.268303 . 23005020 . 1202.6264 . 2012PhRvL.108z8303T . 4890068 .
- Vicsek . T. . Tamás Vicsek. Czirok . A. . Ben-Jacob . E. . Cohen . I. . Shochet . O. . 1995 . Novel type of phase transition in a system of self-driven particles . . 75 . 1226–1229 . cond-mat/0611743. 10.1103/PhysRevLett.75.1226 . 6 . 1995PhRvL..75.1226V . 10060237. 15918052 .
- Hydrodynamics and phases of flocks . Annals of Physics . 2005-07-01 . 170–244 . 318 . Special Issue . 1 . 10.1016/j.aop.2005.04.011 . John . Toner . Yuhai . Tu . Sriram . Ramaswamy . 2005AnPhy.318..170T . 2024-05-03 . 2023-04-07 . https://web.archive.org/web/20230407011639/http://eprints.iisc.ac.in/3397/1/A89.pdf . live .
- Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters. 1995-08-07. 1226–1229. 75. 6. 10.1103/PhysRevLett.75.1226. Tamás. Vicsek. András. Czirók. Eshel. Ben-Jacob. Inon. Cohen. Ofer. Shochet. 10060237. cond-mat/0611743 . 1995PhRvL..75.1226V . 15918052.
- Collective motion of self-propelled particles interacting without cohesion. Physical Review E. 2008-04-18. 046113. 77. 4. 10.1103/PhysRevE.77.046113. 18517696. Hugues. Chaté. Francesco. Ginelli. Guillaume. Grégoire. Franck. Raynaud. 0712.2062 . 2008PhRvE..77d6113C . 30774878.
- Bussemaker. Harmen J.. Deutsch. Andreas. Geigant. Edith. 1997-06-30. Mean-Field Analysis of a Dynamical Phase Transition in a Cellular Automaton Model for Collective Motion. Physical Review Letters. 78. 26. 5018–5021. 10.1103/physrevlett.78.5018. 0031-9007. physics/9706008. 1997PhRvL..78.5018B. 45979152.
- Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences. 2008-01-29. 0027-8424. 2234121. 18227508. 1232–1237. 105. 4. 10.1073/pnas.0711437105. M.. Ballerini. N.. Cabibbo. R.. Candelier. A.. Cavagna. E.. Cisbani. I.. Giardina. V.. Lecomte. A.. Orlandi. G.. Parisi. 0709.1916 . 2008PNAS..105.1232B . free.
- From Disorder to Order in Marching Locusts. Science. 2006-06-02. 0036-8075. 16741126. 1402–1406. 312. 5778. 10.1126/science.1125142. J.. Buhl. D. J. T.. Sumpter. I. D.. Couzin. J. J.. Hale. E.. Despland. E. R.. Miller. S. J.. Simpson. 2006Sci...312.1402B . 359329.
- Physical forces during collective cell migration. Nature Physics. 2009-06-01. 1745-2473. 426–430. 5. 6. 10.1038/nphys1269. Xavier. Trepat. Michael R.. Wasserman. Thomas E.. Angelini. Emil. Millet. David A.. Weitz. James P.. Butler. Jeffrey J.. Fredberg. 2009NatPh...5..426T . free.
- Topology and dynamics of active nematic vesicles. Science. 2014-09-05. 0036-8075. 4401068. 25190790. 1135–1139. 345. 6201. 10.1126/science.1254784. Felix C.. Keber. Etienne. Loiseau. Tim. Sanchez. Stephen J.. DeCamp. Luca. Giomi. Mark J.. Bowick. M. Cristina. Marchetti. Zvonimir. Dogic. Andreas R.. Bausch. 1409.1836 . 2014Sci...345.1135K .
- Living Crystals of Light-Activated Colloidal Surfers. Science. 2013-02-22. 0036-8075. 23371555. 936–940. 339. 6122. 10.1126/science.1230020. Jeremie. Palacci. Stefano. Sacanna. Asher Preska. Steinberg. David J.. Pine. Paul M.. Chaikin. 2013Sci...339..936P . 1974474.
- Collective Motion of Vibrated Polar Disks. Physical Review Letters. 2010-08-23. 098001. 105. 9. 10.1103/PhysRevLett.105.098001. 20868196. Julien. Deseigne. Olivier. Dauchot. Hugues. Chaté. 2010PhRvL.105i8001D. 1004.1499 . 40192049.