Acoelomorpha Explained
Acoelomorpha is a subphylum of very simple and small soft-bodied animals with planula-like features which live in marine or brackish waters. They usually live between grains of sediment, swimming as plankton, or crawling on other organisms, such as algae and corals.[1] With the exception of two acoel freshwater species, all known acoelomorphs are marine.[2]
Systematics
Etymology
The term "acoelomorph" derives from the Ancient Greek words, the alpha privative, expressing negation or absence,, meaning "cavity", and, meaning "form".[3] [4] This refers to the fact that acoelomorphs have a structure lacking a fluid-filled body cavity.
Classification
The subphylum Acoelomorpha is divided into two classes. There are at least 408 described species, with a majority of these falling within the Crucimusculata infraorder in Acoela.
- Acoela comprise small flattened worms, classified into a dozen families.[5]
- Nemertodermatida comprise millimetre-sized, mostly interstitial worms, distributed into two families.[6]
Phylogeny
The soft bodies of acoelomorphs and the lack of some of the key bilaterian traits make them difficult to classify.[7] [8] Traditionally, based on phenotypic features, acoelomorphs were considered to belong to the phylum Platyhelminthes, which was long seen as the sister group to all other bilaterian phyla.[9] However, a series of molecular phylogenetics studies at the hinge between the 20th and 21st centuries demonstrated that they are fast-evolving organisms not closely related to platyhelminthes,[10] [11] [12] [13] therefore involving the polyphyly of flatworms.[14] [15] [16] [17]
Actually, Acoelomorpha appeared to constitute a separate, deep-branching phylum, kingpin of bilaterian evolution.[18] Yet their evolutionary affinities remain enigmatic as they might be the sister-group either to all other bilateral animals or to all deuterostomes. Resolving this debate would indicate whether acoelomorphs are simple or simplified. If they are the sister group to Bilateria, it would point to a simple body plan for the first bilaterian. Alternatively, if acoelomorphs are related to deuterostomes, this would imply that their organisation is the result of secondary simplification.[19]
In addition, comparative analyses of morphological, developmental, and molecular characters raised two points.
- Xenoturbellida is the sister group to acoelomorphs, constituting the so-called Xenacoelomorpha clade.[20] The close evolutionary relationship between Acoelomorpha and Xenoturbella is supported by the morphology (structure of epidermal cilia[21]), the embryology (direct development without a feeding larval stage[22]), and the concatenation of hundreds of proteins.[23] [24]
- The phylogenetic placement of Xenacoelomorpha among bilaterian animals is not yet well defined, despite increased taxon and gene sampling, (re)-analyses of published data sets, and use of more sophisticated models of sequence evolution in phylogenomic studies. There is a conflict between two evolutionary hypotheses, with Xenacoelomorpha being the sister group to Ambulacraria within deuterostomes (i.e., the Xenambulacraria hypothesis) on the one hand,[25] and Xenacoelomorpha as sister group to all other bilaterians (i.e., the Nephrozoa hypothesis) on the other.[24] [26] [27] However, the Nephrozoa hypothesis might reflect methodological errors resulting from model violations in the phylogenomic inference.[25]
Anatomy
Acoelomorphs resemble flatworms in many respects, but have a simpler anatomy, not even having a gut. Like flatworms, they have no circulatory or respiratory systems, but they also lack an excretory system. They lack body cavities (acoelomate structure), a hindgut or an anus.
The epidermal cells of acoelomorphs are unable to proliferate, a feature that is only shared with rhabditophoran flatworms and was for some time considered a strong evidence for the position of Acoelomorpha within Platyhelminthes. In both groups, the epidermis is renewed from mesodermal stem cells.[28]
The nervous system of acoelomorphs is formed by a set of longitudinal nerve bundles beneath the ciliated epidermis. Close to the anterior end, these bundles are united by a ring commissure, but do not form a true brain, although it is hypothesized that such organization was the precursor of the cephalization of the nerve system in more derived bilaterians.[29] After decapitation, such a "brain" (rather, a cerebroid ganglion) regenerates in a few weeks.[30]
The sensory organs include a statocyst – which presumably helps them orient to gravity –, and, in some cases, ancestral pigment-spot ocelli capable of detecting light.
Acoelomorphs are simultaneous hermaphrodites, but have no gonads and no ducts associated with the female reproductive system. Instead, gametes are produced from the mesenchymal cells that fill the body between the epidermis and the digestive vacuole.[31]
External links
Notes and References
- Cannon, L. R. G. (1986) Turbellaria of the World. A guide to families and genera. Brisbane, Queensland Museum, 136 p.
- Book: Structure and evolution of invertebrate nervous systems . Harzsch . Steffen . Purschke . Günter . 2016-01-01. 56–61. Oxford University Press. 978-0-19-968220-1. 951605913.
- Book: Bailly, Anatole . Abrégé du dictionnaire grec français . 1981-01-01 . Hachette . 2010035283 . Paris . 461974285.
- Web site: Greek-french dictionary online . Bailly . Anatole . www.tabularium.be . 2020-02-27.
- Web site: Tyler, S. . Artois, T. . Schilling, S. . Hooge, M. . Bush, L.F. . 2006–2020 . World List of turbellarian worms: Acoelomorpha, Catenulida, Rhabditophora. Acoela . WoRMS - World Register of Marine Species . www.marinespecies.org . 2020-02-12.
- Web site: Tyler, S. . Artois, T. . Schilling, S. . Hooge, M. . Bush, L.F. . 2006–2020 . World List of turbellarian worms: Acoelomorpha, Catenulida, Rhabditophora. Nemertodermatida . WoRMS - World Register of Marine Species . www.marinespecies.org . 2020-02-12.
- Petrov . A. . Hooge . M. . Tyler . S. . 10.1002/jmor.10428 . Comparative morphology of the bursal nozzles in acoels (Acoela, Acoelomorpha) . Journal of Morphology . 267 . 5 . 634–648 . 2006 . 16485278 . 32595353 .
- Web site: Why You Should Care About Acoelomorph Flatworms . Laden . Greg . 2009-10-01 . Smithsonian Magazine . en . 2020-03-02.
- Conway-Morris, S.; George, J. D.; Gibson R.; Platt, H. M. (1985) The Origins and relationships of lower invertebrates. Oxford, Clarendon Press, 397 p.
- Katayama . Tomoe . Yamamoto . Masamichi . Wada . Hiroshi . Satoh . Noriyuki . 1993 . Phylogenetic Position of Acoel Turbellarians Inferred from Partial 18S rDNA Sequences . Zoological Science . 10 . 3 . 529–536 . 0289-0003. 7764139 .
- Katayama . T. . Wada . H. . Furuya . H. . Satoh . N. . Yamamoto . M. . 1995-10-01 . Phylogenetic Position of the Dicyemid Mesozoa Inferred from 18S rDNA Sequences . The Biological Bulletin . 189 . 2 . 81–90 . 10.2307/1542458 . 8541419 . 0006-3185. 1542458 .
- Carranza . S. . Baguñà . J. . Riutort . M. . 1997-05-01 . Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. . Molecular Biology and Evolution . en . 14 . 5 . 485–497 . 10.1093/oxfordjournals.molbev.a025785 . 9159926 . 0737-4038.
- Ruiz-Trillo . Iñaki . Riutort . Marta . Littlewood . D. Timothy J. . Herniou . Elisabeth A. . Baguñà . Jaume . March 1999 . Acoel Flatworms: Earliest Extant Bilaterian Metazoans, Not Members of Platyhelminthes . Science . 283 . 5409 . 1919–1923 . 10.1126/science.283.5409.1919 . 10082465 . 0036-8075 . 1999Sci...283.1919R .
- Baguñà . J. . Riutort . M. . 10.1139/z03-214 . Molecular phylogeny of the Platyhelminthes . Canadian Journal of Zoology . 82 . 2 . 168–193 . 2004 .
- Baguñà . Jaume . Riutort . Marta . The dawn of bilaterian animals: the case of acoelomorph flatworms . BioEssays . 26 . 10 . 2004 . 1046–57 . 10.1002/bies.20113 . 15382134. 40453683 .
- Ruiz-Trillo . Iñaki . Riutort . Marta . Fourcade . H. Matthew . Baguñà . Jaume . Boore . Jeffrey L. . Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes . Molecular Phylogenetics and Evolution . 33 . 2 . 2004 . 321–32 . 10.1016/j.ympev.2004.06.002 . 15336667. 2004MolPE..33..321R .
- Philippe . Hervé . Brinkmann . Henner . Martinez . Pedro . Riutort . Marta . Baguñà . Jaume . 2007-08-08 . Volff . Jean-Nicolas . Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics . PLOS ONE . en . 2 . 8 . e717 . 10.1371/journal.pone.0000717 . 1932-6203 . 1933604 . 17684563. free . 2007PLoSO...2..717P .
- Haszprunar . G. . 1996 . Plathelminthes and Plathelminthomorpha — paraphyletic taxa . Journal of Zoological Systematics and Evolutionary Research . en . 34 . 1 . 41–48 . 10.1111/j.1439-0469.1996.tb00808.x . 1439-0469. free .
- Ruiz-Trillo . Iñaki . Paps . Jordi . 2016-06-01 . Acoelomorpha: earliest branching bilaterians or deuterostomes? . Organisms Diversity & Evolution . en . 16 . 2 . 391–399 . 10.1007/s13127-015-0239-1 . 1618-1077. free . 2016ODivE..16..391R . 1983/2686c832-dffe-4486-b3b2-17d4966fd64e . free .
- Philippe . H. . Brinkmann . H. . Copley . R. R. . Moroz . L. L. . Nakano . H. . Poustka . A. J. . Wallberg . A. . Peterson . K. J. . Telford . M. J. . Acoelomorph flatworms are deuterostomes related to Xenoturbella . Nature . 470 . 255–258 . 2011 . 21307940 . 10.1038/nature09676 . 2011Natur.470..255P . 7333 . 4025995.
- Lundin . K . 1998 . The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes) . Zoologica Scripta . 27 . 3 . 263–270 . 10.1111/j.1463-6409.1998.tb00440.x. 85324766 .
- Lundin . K. . Bourlat . S. J. . Telford . M. J. . Funch . P. . Nyengaard . J. R. . Obst . M. . Thorndyke . M. C. . 2013 . Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha . Nature Communications . 4 . 1537– . 10.1038/ncomms2556 . 3586728 . 23443565 . Nakano . H. . 2013NatCo...4.1537N.
- Hejnol . Andreas . Obst . Matthias . Stamatakis . Alexandros . Ott . Michael . Rouse . Greg W. . Edgecombe . Gregory D. . Martinez . Pedro . Baguñà . Jaume . Bailly . Xavier . Jondelius . Ulf . Wiens . Matthias . 2009-12-22 . Assessing the root of bilaterian animals with scalable phylogenomic methods . Proceedings of the Royal Society B: Biological Sciences . 276 . 1677 . 4261–4270 . 10.1098/rspb.2009.0896 . 2817096 . 19759036.
- Edgecombe . G. D. . Giribet . G. . Dunn . C. W. . Hejnol . A. . Kristensen . R. M. . Neves . R. C. . Rouse . G. W. . Worsaae . K. . Sørensen . M. V. . 2011 . Higher-level metazoan relationships: Recent progress and remaining questions . Organisms Diversity & Evolution . 11 . 2 . 151–172 . 10.1007/s13127-011-0044-4 . 2011ODivE..11..151E . 32169826 .
- Philippe . Hervé . Poustka . Albert J. . Chiodin . Marta . Hoff . Katharina J. . Dessimoz . Christophe . Tomiczek . Bartlomiej . Schiffer . Philipp H. . Müller . Steven . Domman . Daryl . Horn . Matthias . Kuhl . Heiner . Timmermann . Bernd . Satoh . Noriyuki . Hikosaka-Katayama . Tomoe . Nakano . Hiroaki . Rowe . Matthew L. . Elphick . Maurice R. . Thomas-Chollier . Morgane . Hankeln . Thomas . Mertes . Florian . Wallberg . Andreas . Rast . Jonathan P. . Copley . Richard R. . Martinez . Pedro . Telford . Maximilian J. . Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria . Current Biology . 29 . 11 . 2019 . 1818–1826.e6 . 0960-9822 . 10.1016/j.cub.2019.04.009 . 31104936 . 2019CBio...29E1818P . 21.11116/0000-0004-DC4B-1. 155104811 . free .
- 10.1016/j.cub.2014.03.042 . Whole-Body Acoel Regeneration is Controlled by Wnt and Bmp-Admp Signaling . Current Biology . 24 . 10 . 1107–13 . 2014 . Srivastava . M. . Mazza-Curll . K. L. . Van Wolfswinkel . J. C. . Reddien . P. W. . 24768051 . free. 2014CBio...24.1107S .
- Cannon . Johanna Taylor . Vellutini . Bruno Cossermelli . Smith . Julian . Ronquist . Fredrik . Jondelius . Ulf . Hejnol . Andreas . Xenacoelomorpha is the sister group to Nephrozoa . Nature . 530 . 7588 . 2016 . 89–93 . 10.1038/nature16520 . 26842059 . 2016Natur.530...89C. 205247296 .
- Michalak. Pawel. Egger. Bernhard. Steinke. Dirk. Tarui. Hiroshi. De Mulder. Katrien. Arendt. Detlev. Borgonie. Gaëtan. Funayama. Noriko. Gschwentner. Robert. Hartenstein. Volker. Hobmayer. Bert. Hooge. Matthew. Hrouda. Martina. Ishida. Sachiko. Kobayashi. Chiyoko. Kuales. Georg. Nishimura. Osamu. Pfister. Daniela. Rieger. Reinhard. Salvenmoser. Willi. Smith. Julian. Technau. Ulrich. Tyler. Seth. Agata. Kiyokazu. Salzburger. Walter. Ladurner. Peter. To Be or Not to Be a Flatworm: The Acoel Controversy. PLOS ONE. 4. 5. e5502. 2009 . 10.1371/journal.pone.0005502. 19430533. 2676513. free. 2009PLoSO...4.5502E .
- Perea-Atienza. E.. Gavilan. B.. Chiodin. M.. Abril. J. F.. Hoff. K. J.. Poustka. A. J.. Martinez. P.. The nervous system of Xenacoelomorpha: a genomic perspective. Journal of Experimental Biology. 218. 4. 2015. 618–28 . 10.1242/jeb.110379. 25696825. free. 2445/192702. free.
- Sprecher. Simon G.. & al. . Functional brain regeneration in the acoel worm Symsagittifera roscoffensis. Biology Open. 4. 12. 2015. 1688–1695. 10.1242/bio.014266 . 26581588. 4736034.
- Book: Barnes, Robert D. . 1982 . Invertebrate Zoology . Holt-Saunders International . Philadelphia, PA. 229. 978-0-03-056747-6.