In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.
The original motivation for studying zonohedra is that the Voronoi diagram of any lattice forms a convex uniform honeycomb in which the cells are zonohedra. Any zonohedron formed in this way can tessellate 3-dimensional space and is called a primary parallelohedron. Each primary parallelohedron is combinatorially equivalent to one of five types: the rhombohedron (including the cube), hexagonal prism, truncated octahedron, rhombic dodecahedron, and the rhombo-hexagonal dodecahedron.
Let
\{v0,v1,...\}
vi
Each edge in a zonohedron is parallel to at least one of the generators, and has length equal to the sum of the lengths of the generators to which it is parallel. Therefore, by choosing a set of generators with no parallel pairs of vectors, and by setting all vector lengths equal, we may form an equilateral version of any combinatorial type of zonohedron.
By choosing sets of vectors with high degrees of symmetry, we can form in this way, zonohedra with at least as much symmetry. For instance, generators equally spaced around the equator of a sphere, together with another pair of generators through the poles of the sphere, form zonohedra in the form of prism over regular
2k
The Minkowski sum of any two zonohedra is another zonohedron, generated by the union of the generators of the two given zonohedra. Thus, the Minkowski sum of a cube and a truncated octahedron forms the truncated cuboctahedron, while the Minkowski sum of the cube and the rhombic dodecahedron forms the truncated rhombic dodecahedron. Both of these zonohedra are simple (three faces meet at each vertex), as is the truncated small rhombicuboctahedron formed from the Minkowski sum of the cube, truncated octahedron, and rhombic dodecahedron.[1]
The Gauss map of any convex polyhedron maps each face of the polygon to a point on the unit sphere, and maps each edge of the polygon separating a pair of faces to a great circle arc connecting the corresponding two points. In the case of a zonohedron, the edges surrounding each face can be grouped into pairs of parallel edges, and when translated via the Gauss map any such pair becomes a pair of contiguous segments on the same great circle. Thus, the edges of the zonohedron can be grouped into zones of parallel edges, which correspond to the segments of a common great circle on the Gauss map, and the 1-skeleton of the zonohedron can be viewed as the planar dual graph to an arrangement of great circles on the sphere. Conversely any arrangement of great circles may be formed from the Gauss map of a zonohedron generated by vectors perpendicular to the planes through the circles.
Any simple zonohedron corresponds in this way to a simplicial arrangement, one in which each face is a triangle. Simplicial arrangements of great circles correspond via central projection to simplicial arrangements of lines in the projective plane. There are three known infinite families of simplicial arrangements, one of which leads to the prisms when converted to zonohedra, and the other two of which correspond to additional infinite families of simple zonohedra. There are also many sporadic examples that do not fit into these three families.[2]
It follows from the correspondence between zonohedra and arrangements, and from the Sylvester–Gallai theorem which (in its projective dual form) proves the existence of crossings of only two lines in any arrangement, that every zonohedron has at least one pair of opposite parallelogram faces. (Squares, rectangles, and rhombuses count for this purpose as special cases of parallelograms.) More strongly, every zonohedron has at least six parallelogram faces, and every zonohedron has a number of parallelogram faces that is linear in its number of generators.[3]
Any prism over a regular polygon with an even number of sides forms a zonohedron. These prisms can be formed so that all faces are regular: two opposite faces are equal to the regular polygon from which the prism was formed, and these are connected by a sequence of square faces. Zonohedra of this type are the cube, hexagonal prism, octagonal prism, decagonal prism, dodecagonal prism, etc.
In addition to this infinite family of regular-faced zonohedra, there are three Archimedean solids, all omnitruncations of the regular forms:
In addition, certain Catalan solids (duals of Archimedean solids) are again zonohedra:
Others with congruent rhombic faces:
There are infinitely many zonohedra with rhombic faces that are not all congruent to each other. They include:
zonohedron | image | number of generators | regular face | face transitive | edge transitive | vertex transitive | Parallelohedron (space-filling) | simple | ||
---|---|---|---|---|---|---|---|---|---|---|
Cube 4.4.4 | style='text-align: center;' | 3 | ||||||||
Hexagonal prism 4.4.6 | style='text-align: center;' | 4 | ||||||||
2n-prism (n > 3) 4.4.2n | style='text-align: center;' | n + 1 | ||||||||
Truncated octahedron 4.6.6 | style='text-align: center;' | 6 | ||||||||
Truncated cuboctahedron 4.6.8 | style='text-align: center;' | 9 | ||||||||
Truncated icosidodecahedron 4.6.10 | style='text-align: center;' | 15 | ||||||||
Parallelepiped | style='text-align: center;' | 3 | ||||||||
Rhombic dodecahedron V3.4.3.4 | style='text-align: center;' | 4 | ||||||||
Bilinski dodecahedron | style='text-align: center;' | 4 | ||||||||
Rhombic icosahedron | style='text-align: center;' | 5 | ||||||||
Rhombic triacontahedron V3.5.3.5 | style='text-align: center;' | 6 | ||||||||
Rhombo-hexagonal dodecahedron | style='text-align: center;' | 5 | ||||||||
Truncated rhombic dodecahedron | style='text-align: center;' | 7 |
Every zonohedron with
n
\tbinom{n}{3}
The Dehn invariant of any zonohedron is zero. This implies that any two zonohedra with the same volume can be dissected into each other. This means that it is possible to cut one of the two zonohedra into polyhedral pieces that can be reassembled into the other.[5]
Zonohedrification is a process defined by George W. Hart for creating a zonohedron from another polyhedron.[6] [7]
First the vertices of any seed polyhedron are considered vectors from the polyhedron center. These vectors create the zonohedron which we call the zonohedrification of the original polyhedron. If the seed polyhedron has central symmetry, opposite points define the same direction, so the number of zones in the zonohedron is half the number of vertices of the seed. For any two vertices of the original polyhedron, there are two opposite planes of the zonohedrification which each have two edges parallel to the vertex vectors.
The Minkowski sum of line segments in any dimension forms a type of polytope called a zonotope. Equivalently, a zonotope
Z
v1,...,v
n | |
k\inR |
Z=\{a1v1+ … +akvk| \forall(j)aj\in[0,1]\}
k\leqn
Z
The facets of any zonotope are themselves zonotopes of one lower dimension; for instance, the faces of zonohedra are zonogons. Examples of four-dimensional zonotopes include the tesseract (Minkowski sums of d mutually perpendicular equal length line segments), the omnitruncated 5-cell, and the truncated 24-cell. Every permutohedron is a zonotope.
Fix a zonotope
Z
V=\{v1,...,v
d | |
n\}\subsetR |
M
d x n
vi
\underline{l{M}}
M
Z
Z
For example, pairs of opposite facets of
Z
l{M}
l{M}
{M}
Z
l{M}
Z
l{M}
0\prec+,-
M
N
[0,2]\subsetR
\{2e1\}
\{e1,e1\}
[2]
[1~1]
Tiling properties of the zonotope
Z
l{M}
Z
Rd
Λ\subsetRd
Z+λ
λ\inΛ
Rd
Z
V
Another family of tilings associated to the zonotope
Z
Z
Z
Z
Z
Z
l{M}
Z
Zonohedra, and n-dimensional zonotopes in general, are noteworthy for admitting a simple analytic formula for their volume.[11]
Let
Z(S)
Z=\{a1v1+ … +akvk| \forall(j)aj\in[0,1]\}
S=\{v1,...,v
n\} | |
k\inR |
Z(S)
\sumT\subset|\det(Z(T))|
The determinant in this formula makes sense because (as noted above) when the set
T
n
Note that when
k<n
. Coxeter, H. S. M . Harold Scott MacDonald Coxeter . 1999 . The Beauty of Geometry . Dover . Mineola, NY . 0-486-40919-8 . 54–74.