Standard normal table explained

In statistics, a standard normal table, also called the unit normal table or Z table,[1] is a mathematical table for the values of, the cumulative distribution function of the normal distribution. It is used to find the probability that a statistic is observed below, above, or between values on the standard normal distribution, and by extension, any normal distribution. Since probability tables cannot be printed for every normal distribution, as there are an infinite variety of normal distributions, it is common practice to convert a normal to a standard normal (known as a z-score) and then use the standard normal table to find probabilities.[2]

Normal and standard normal distribution

Normal distributions are symmetrical, bell-shaped distributions that are useful in describing real-world data. The standard normal distribution, represented by, is the normal distribution having a mean of 0 and a standard deviation of 1.

Conversion

See main article: Standard normal deviate. If is a random variable from a normal distribution with mean and standard deviation, its Z-score may be calculated from by subtracting and dividing by the standard deviation:

Z=

X-\mu
\sigma

If

\overline{X}

is the mean of a sample of size from some population in which the mean is and the standard deviation is, the standard error is

Z=

\overline{X
-

\mu}{\sigma/\sqrtn}

If \sum X is the total of a sample of size from some population in which the mean is and the standard deviation is, the expected total is and the standard error is

Z=

\sum{X
-

n\mu}{\sigma\sqrt{n}}

Reading a Z table

Formatting / layout

tables are typically composed as follows:

Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table.

To find a negative value such as -0.83, one could use a cumulative table for negative z-values[3] which yield a probability of 0.20327.

But since the normal distribution curve is symmetrical, probabilities for only positive values of are typically given. The user might have to use a complementary operation on the absolute value of, as in the example below.

Types of tables

tables use at least three different conventions:

Cumulative from mean: gives a probability that a statistic is between 0 (mean) and . Example: .
  • Cumulative: gives a probability that a statistic is less than . This equates to the area of the distribution below . Example: .
  • Complementary cumulative: gives a probability that a statistic is greater than . This equates to the area of the distribution above .
  • Example: Find . Since this is the portion of the area above, the proportion that is greater than is found by subtracting from 1. That is or .

    Table examples

    Cumulative from minus infinity to Z

    This table gives a probability that a statistic is between minus infinity and .

    f(z)=\Phi(z)

    The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted with the capital Greek letter

    \Phi

    (phi), is the integral

    \Phi(z)=

    1
    \sqrt{2\pi
    } \int_^z e^ \, dt

    \Phi

    (z) is related to the error function, or .

    \Phi(z)=

    12\left[1
    +

    \operatorname{erf}\left(

    z
    \sqrt2

    \right)\right]

    Note that for, one obtains (after multiplying by 2 to account for the interval) the results, characteristic of the 68–95–99.7 rule.

    Cumulative (less than Z)

    This table gives a probability that a statistic is less than (i.e. between negative infinity and).

    z −0.00−0.01−0.02−0.03−0.04−0.05−0.06−0.07−0.08−0.09
    -4.00.000030.000030.000030.000030.000030.000030.000020.000020.000020.00002
    -3.90.000050.000050.000040.000040.000040.000040.000040.000040.000030.00003
    -3.80.000070.000070.000070.000060.000060.000060.000060.000050.000050.00005
    -3.70.000110.000100.000100.000100.000090.000090.000080.000080.000080.00008
    -3.60.000160.000150.000150.000140.000140.000130.000130.000120.000120.00011
    -3.50.000230.000220.000220.000210.000200.000190.000190.000180.000170.00017
    −3.40.000340.000320.000310.000300.000290.000280.000270.000260.000250.00024
    −3.30.000480.000470.000450.000430.000420.000400.000390.000380.000360.00035
    −3.20.000690.000660.000640.000620.000600.000580.000560.000540.000520.00050
    −3.10.000970.000940.000900.000870.000840.000820.000790.000760.000740.00071
    −3.00.001350.001310.001260.001220.001180.001140.001110.001070.001040.00100
    −2.90.001870.001810.001750.001690.001640.001590.001540.001490.001440.00139
    −2.80.002560.002480.002400.002330.002260.002190.002120.002050.001990.00193
    −2.70.003470.003360.003260.003170.003070.002980.002890.002800.002720.00264
    −2.60.004660.004530.004400.004270.004150.004020.003910.003790.003680.00357
    −2.50.006210.006040.005870.005700.005540.005390.005230.005080.004940.00480
    −2.40.008200.007980.007760.007550.007340.007140.006950.006760.006570.00639
    −2.30.010720.010440.010170.009900.009640.009390.009140.008890.008660.00842
    −2.20.013900.013550.013210.012870.012550.012220.011910.011600.011300.01101
    −2.10.017860.017430.017000.016590.016180.015780.015390.015000.014630.01426
    −2.00.022750.022220.021690.021180.020680.020180.019700.019230.018760.01831
    −1.90.028720.028070.027430.026800.026190.025590.025000.024420.023850.02330
    −1.80.035930.035150.034380.033620.032880.032160.031440.030740.030050.02938
    −1.70.044570.043630.042720.041820.040930.040060.039200.038360.037540.03673
    −1.60.054800.053700.052620.051550.050500.049470.048460.047460.046480.04551
    −1.50.066810.065520.064260.063010.061780.060570.059380.058210.057050.05592
    −1.40.080760.079270.077800.076360.074930.073530.072150.070780.069440.06811
    −1.30.096800.095100.093420.091760.090120.088510.086920.085340.083790.08226
    −1.20.115070.113140.111230.109350.107490.105650.103830.102040.100270.09853
    −1.10.135670.133500.131360.129240.127140.125070.123020.121000.119000.11702
    −1.00.158660.156250.153860.151510.149170.146860.144570.142310.140070.13786
    −0.90.184060.181410.178790.176190.173610.171060.168530.166020.163540.16109
    −0.80.211860.208970.206110.203270.200450.197660.194890.192150.189430.18673
    −0.70.241960.238850.235760.232700.229650.226630.223630.220650.217700.21476
    −0.60.274250.270930.267630.264350.261090.257850.254630.251430.248250.24510
    −0.50.308540.305030.301530.298060.294600.291160.287740.284340.280960.27760
    −0.40.344580.340900.337240.333600.329970.326360.322760.319180.315610.31207
    −0.30.382090.378280.374480.370700.366930.363170.359420.355690.351970.34827
    −0.20.420740.416830.412940.409050.405170.401290.397430.393580.389740.38591
    −0.10.460170.456200.452240.448280.444330.440380.436440.432510.428580.42465
    −0.00.500000.496010.492020.488030.484050.480060.476080.472100.468120.46414
    z −0.00−0.01−0.02−0.03−0.04−0.05−0.06−0.07−0.08−0.09
    z + 0.00+ 0.01+ 0.02+ 0.03+ 0.04+ 0.05+ 0.06+ 0.07+ 0.08+ 0.09
    0.00.500000.503990.507980.511970.515950.519940.523920.527900.531880.53586
    0.10.539830.543800.547760.551720.555670.559620.563600.567490.571420.57535
    0.20.579260.583170.587060.590950.594830.598710.602570.606420.610260.61409
    0.30.617910.621720.625520.629300.633070.636830.640580.644310.648030.65173
    0.40.655420.659100.662760.666400.670030.673640.677240.680820.684390.68793
    0.50.691460.694970.698470.701940.705400.708840.712260.715660.719040.72240
    0.60.725750.729070.732370.735650.738910.742150.745370.748570.751750.75490
    0.70.758040.761150.764240.767300.770350.773370.776370.779350.782300.78524
    0.80.788140.791030.793890.796730.799550.802340.805110.807850.810570.81327
    0.90.815940.818590.821210.823810.826390.828940.831470.833980.836460.83891
    1.00.841340.843750.846140.848490.850830.853140.855430.857690.859930.86214
    1.10.864330.866500.868640.870760.872860.874930.876980.879000.881000.88298
    1.20.884930.886860.888770.890650.892510.894350.896170.897960.899730.90147
    1.30.903200.904900.906580.908240.909880.911490.913080.914660.916210.91774
    1.40.919240.920730.922200.923640.925070.926470.927850.929220.930560.93189
    1.50.933190.934480.935740.936990.938220.939430.940620.941790.942950.94408
    1.60.945200.946300.947380.948450.949500.950530.951540.952540.953520.95449
    1.70.955430.956370.957280.958180.959070.959940.960800.961640.962460.96327
    1.80.964070.964850.965620.966380.967120.967840.968560.969260.969950.97062
    1.90.971280.971930.972570.973200.973810.974410.975000.975580.976150.97670
    2.00.977250.977780.978310.978820.979320.979820.980300.980770.981240.98169
    2.10.982140.982570.983000.983410.983820.984220.984610.985000.985370.98574
    2.20.986100.986450.986790.987130.987450.987780.988090.988400.988700.98899
    2.30.989280.989560.989830.990100.990360.990610.990860.991110.991340.99158
    2.40.991800.992020.992240.992450.992660.992860.993050.993240.993430.99361
    2.50.993790.993960.994130.994300.994460.994610.994770.994920.995060.99520
    2.60.995340.995470.995600.995730.995850.995980.996090.996210.996320.99643
    2.70.996530.996640.996740.996830.996930.997020.997110.997200.997280.99736
    2.80.997440.997520.997600.997670.997740.997810.997880.997950.998010.99807
    2.90.998130.998190.998250.998310.998360.998410.998460.998510.998560.99861
    3.00.998650.998690.998740.998780.998820.998860.998890.998930.998960.99900
    3.10.999030.999060.999100.999130.999160.999180.999210.999240.999260.99929
    3.20.999310.999340.999360.999380.999400.999420.999440.999460.999480.99950
    3.30.999520.999530.999550.999570.999580.999600.999610.999620.999640.99965
    3.40.999660.999680.999690.999700.999710.999720.999730.999740.999750.99976
    3.50.999770.999780.999780.999790.999800.999810.999810.999820.999830.99983
    3.60.999840.999850.999850.999860.999860.999870.999870.999880.999880.99989
    3.70.999890.999900.999900.999900.999910.999910.999920.999920.999920.99992
    3.80.999930.999930.999930.999940.999940.999940.999940.999950.999950.99995
    3.90.999950.999950.999960.999960.999960.999960.999960.999960.999970.99997
    4.00.999970.999970.999970.999970.999970.999970.999980.999980.999980.99998
    z +0.00+0.01+0.02+0.03+0.04+0.05+0.06+0.07+0.08+0.09
    [4]

    Complementary cumulative

    This table gives a probability that a statistic is greater than .

    f(z)=1-\Phi(z)

    z +0.00+0.01+0.02+0.03+0.04+0.05+0.06+0.07+0.08+0.09
    0.00.500000.496010.492020.488030.484050.480060.476080.472100.468120.46414
    0.10.460170.456200.452240.448280.444330.440380.436400.432510.428580.42465
    0.20.420740.416830.412940.409050.405170.401290.397430.393580.389740.38591
    0.30.382090.378280.374480.370700.366930.363170.359420.355690.351970.34827
    0.40.344580.340900.337240.333600.329970.326360.322760.319180.315610.31207
    0.50.308540.305030.301530.298060.294600.291160.287740.284340.280960.27760
    0.60.274250.270930.267630.264350.261090.257850.254630.251430.248250.24510
    0.70.241960.238850.235760.232700.229650.226630.223630.220650.217700.21476
    0.80.211860.208970.206110.203270.200450.197660.194890.192150.189430.18673
    0.90.184060.181410.178790.176190.173610.171060.168530.166020.163540.16109
    1.00.158660.156250.153860.151510.149170.146860.144570.142310.140070.13786
    1.10.135670.133500.131360.129240.127140.125070.123020.121000.119000.11702
    1.20.115070.113140.111230.109350.107490.105650.103830.102040.100270.09853
    1.30.096800.095100.093420.091760.090120.088510.086920.085340.083790.08226
    1.40.080760.079270.077800.076360.074930.073530.072150.070780.069440.06811
    1.50.066810.065520.064260.063010.061780.060570.059380.058210.057050.05592
    1.60.054800.053700.052620.051550.050500.049470.048460.047460.046480.04551
    1.70.044570.043630.042720.041820.040930.040060.039200.038360.037540.03673
    1.80.035930.035150.034380.033620.032880.032160.031440.030740.030050.02938
    1.90.028720.028070.027430.026800.026190.025590.025000.024420.023850.02330
    2.00.022750.022220.021690.021180.020680.020180.019700.019230.018760.01831
    2.10.017860.017430.017000.016590.016180.015780.015390.015000.014630.01426
    2.20.013900.013550.013210.012870.012550.012220.011910.011600.011300.01101
    2.30.010720.010440.010170.009900.009640.009390.009140.008890.008660.00842
    2.40.008200.007980.007760.007550.007340.007140.006950.006760.006570.00639
    2.50.006210.006040.005870.005700.005540.005390.005230.005080.004940.00480
    2.60.004660.004530.004400.004270.004150.004020.003910.003790.003680.00357
    2.70.003470.003360.003260.003170.003070.002980.002890.002800.002720.00264
    2.80.002560.002480.002400.002330.002260.002190.002120.002050.001990.00193
    2.90.001870.001810.001750.001690.001640.001590.001540.001490.001440.00139
    3.00.001350.001310.001260.001220.001180.001140.001110.001070.001040.00100
    3.10.000970.000940.000900.000870.000840.000820.000790.000760.000740.00071
    3.20.000690.000660.000640.000620.000600.000580.000560.000540.000520.00050
    3.30.000480.000470.000450.000430.000420.000400.000390.000380.000360.00035
    3.40.000340.000320.000310.000300.000290.000280.000270.000260.000250.00024
    3.50.000230.000220.000220.000210.000200.000190.000190.000180.000170.00017
    3.60.000160.000150.000150.000140.000140.000130.000130.000120.000120.00011
    3.70.000110.000100.000100.000100.000090.000090.000080.000080.000080.00008
    3.80.000070.000070.000070.000060.000060.000060.000060.000050.000050.00005
    3.90.000050.000050.000040.000040.000040.000040.000040.000040.000030.00003
    4.00.000030.000030.000030.000030.000030.000030.000020.000020.000020.00002
    [5]

    This table gives a probability that a statistic is greater than Z, for large integer Z values.

    z +0+1+2+3+4+5+6+7+8+9
    05.00000 E −11.58655 E −12.27501 E −21.34990 E −33.16712 E −52.86652 E −79.86588 E −101.27981 E −126.22096 E −161.12859 E −19
    107.61985 E −241.91066 E −281.77648 E −336.11716 E −397.79354 E −453.67097 E −516.38875 E −584.10600 E −659.74095 E −738.52722 E −81
    202.75362 E -893.27928 E -981.43989 E -1072.33064 E -1171.39039 E -1273.05670 E -1382.47606 E -1497.38948 E -1618.12387 E -1733.28979 E -185
    304.90671 E -1982.69525 E -2115.45208 E -2254.06119 E -2391.11390 E -2531.12491 E -2684.18262 E -2845.72557 E -3002.88543 E -3165.35312 E -333
    403.65589 E -3509.19086 E -3688.50515 E -3862.89707 E -4043.63224 E -4231.67618 E -4422.84699 E -4621.77976 E -4824.09484 E -5033.46743 E -524
    501.08060 E -5451.23937 E -5675.23127 E -5908.12606 E -6134.64529 E -6369.77237 E -6607.56547 E -6842.15534 E -7082.25962 E -7338.71741 E -759
    601.23757 E -7846.46517 E -8111.24283 E -8378.79146 E -8652.28836 E -8922.19180 E -9207.72476 E -9491.00178 E -9774.78041 E -10078.39374 E -1037
    705.42304 E -10671.28921 E -10971.12771 E -11283.62960 E -11604.29841 E -11921.87302 E -12243.00302 E -12571.77155 E -12903.84530 E -13243.07102 E -1358

    Examples of use

    A professor's exam scores are approximately distributed normally with mean 80 and standard deviation 5. Only a cumulative from mean table is available.

    P(X \le 82) &= P \!\! \left(Z \le \frac\right) \\ &= P(Z \le 0.40) \\[2pt] &= 0.15542 + 0.5 \\[2pt] &= 0.65542\end

    P(X \ge 90) &= P \!\! \left(Z \ge \frac\right) \\ &= P(Z \ge 2.00) \\[2pt] &= 1 - P(Z \le 2.00) \\[2pt] &= 1 - (0.47725 + 0.5) \\[2pt] &= 0.02275\end

    P(X \le 74) &= P \!\! \left(Z \le \frac\right) \\ &= P(Z \le - 1.20)\end Since this table does not include negatives, the process involves the following additional step: \begin\qquad \qquad \quad = & P(Z \ge 1.20) \\[2pt]= & 1 - (0.38493 + 0.5) \\[2pt]= & 0.11507\end

    P(74 \le X \le 82) &= P(X \le 82) - P(X \le 74) \\[2pt] &= 0.65542 - 0.11507 \\[2pt] &= 0.54035\end

    P(X \le 82) &= P\left(Z \le \frac\right) \\ &= P(Z \le 0.69) \\[2pt] &= 0.2549 + 0.5 \\[2pt] &= 0.7549\end

    See also

    Notes and References

    1. Web site: Z Table. History of Z Table. Z Score. 21 December 2018.
    2. Book: Elementary Statistics: Picturing the World. Ron . Larson. Elizabeth. Farber. 清华大学出版社. 2004. 7-302-09723-2. 214.
    3. Web site: How to use a Z Table . ztable.io . 9 January 2023.
    4. 0.5 + each value in Cumulative from mean table
    5. 0.5 − each value in Cumulative from mean (0 to Z) table