In mathematical analysis, the Young's inequality for integral operators, is a bound on the
Lp\toLq
Lr
Assume that
X
Y
K:X x Y\toR
q,p,r\geq1
1 | |
q |
=
1 | |
p |
+
1 | |
r |
-1
\intY|K(x,y)|rdy\leCr
x\inX
\intX|K(x,y)|rdx\leCr
y\inY
\intX\left|\intYK(x,y)f(y)dy\right|qdx \leCq\left(\intY|f(y)|pd
| ||||
y\right) |
.
If
X=Y=Rd
K(x,y)=h(x-y)
Young's inequality for products